
Product Line Requirements: Multi-Paradigm Variability Models

Miguel A. Laguna
University of Valladolid

mlaguna@infor.uva.es

Bruno González-Baixauli
University of Valladolid

 bbaixauli@infor.uva.es

Abstract

One of the most important issues in the development of

software product lines is the elicitation, management, and
representation of the variability. In this context, one of the

most used instruments is the feature model. But a feature

model (due to the open definition of feature) usually
contains an amalgamation of various different variability

aspects as structural, behavioral, non-functional, or

platform variability. We propose to separate these
variability aspects of the product line, using other models

as goals or UML diagrams but keeping features as the

core model. The second part of the article explores the
possibilities of identifying mappings between the feature

models and the correspondent architectural counterparts.

With these mappings, the automated creation of
traceability links between the product line models is

possible and hence the productivity in the development

process of the product line will be enhanced. This
approach also simplifies the separation in several

development stages, using the appropriate paradigms as
goals, features, package models, platforms…

1. Introduction

The development of software product lines (PL) faces

many technical and organizational trends, in spite of its

success in the reuse field [2], [4]. A PL itself is a set of

reusable assets, where three abstraction levels can be

clearly identified (requirements, design and

implementation). In the requirements level, one of the key

activities is the specification of the variability and

commonality of the PL. The design of a solution for these

requirements constitutes the domain architecture of the

product line. Later, the architecture of a single product

must be derived from this domain architecture. In this

process, the customer functional and non-functional

requirements for the product are used for choosing among

alternative features. This activity can be seen as a

transformation process where a set of decisions at the

requirements level generates the product feature model

and, consequently, via traceability, the architecture of the

product as proposed in [7].

Therefore, one of the most critical points is the

elicitation and analysis of variability in the product line

requirements. In addition to the information that expresses

the requirements themselves it is important to know the

variability of these requirements, and the dependencies

between them. In this context, feature models are the

basic instrument to analyze and configure the variability

and commonality of the software family. But although its

effectiveness has been proven in many projects, these

models are oriented to the solution (what characteristics

should have the products) more than to the requirements

(what must do the products). On the other hand, non-

functional aspects are very difficult to express as a feature

because of their fuzzy nature. Consequently, the use of

the feature diagrams as a monolithic tool over-simplifies

and limits the potential of the technique.

We propose to use additionally techniques from Goal

Oriented Requirements Engineering (GORE) and some of

the well known UML diagrams. This proposal assumes

that more than a unique view is needed to express the

diverse variability aspects of a PL. In this context, the

relationships and traceability links between models are

critical. The second part of the article discusses some of

the most interesting of these relationships.

The rest of the paper is as follows: The next Section

discusses the separation of the variability model in several

views, enabling to work in several abstraction levels.

Section 3 analyses related work and identifies mappings

between features and architectural UML models. Section

4 concludes the paper and proposes additional work.

2 Multi-paradigm PL Requirements

Originally the Feature Oriented Domain Analysis

(FODA)[15] proposed features as the basis for analyzing

and representing commonality and variability of

applications in a domain. A feature represents a system

characteristic realized by a software component. There are

four types of features in feature modeling: Mandatory,

Optional, Alternative, and Or (Figure 1). As long as its

parent feature is included: a Mandatory feature must be

included in every member of a product line; an Optional

feature may be included; exactly one feature from a set of

Alternative features must be included; and any non-empty

subset from a set of Or features should be included.

Several improvements have been proposed (see [19] for a

comparison). In particular a (min:max) cardinality can be

used for both ends of the parent/child relations. As a

11th. Workshop on Requirements Engineering

211

natural extension, the general cardinality (m, n) can

indicate mixed type of feature decompositions.

Figure 1. Basic FODA constructions

Other extensions [1] add an atomic kind of feature for

some of the leaves of the feature tree with attribute value

(String, Integer, etc.). This aspect is interesting if we seek

to transform feature diagrams into architectural models.

But the original idea of feature models tries to cover

simultaneously different variability models: it represents

structural variability, behavioral variability, non-

functional variability, etc. The differentiation of these

different aspects, separating them in different models, can

improve the development of the PL. We propose to use

the feature model as the central piece of the puzzle that

connect the rest of the models, better at expressing

different aspects of variability. Features are also the best

tool for the PL configuration process.

To start the analysis of the different facets of

variability that feature amalgamates we look at the

classification of features in literature. FODA [15]

classifies the commonality and variability aspects in:

 The capabilities of applications in a domain from

the perspective of the user. They are user visible

characteristics that can be identified as services,

operations, or non-functional characteristics.

 The operating environments (hardware and

software platforms, including operating systems)

in which applications are used and operated.

 The application domain technology based on

which requirements decisions are made (including

laws, standardization, business rules).

 The implementation techniques (algorithms or

data structures).

Jarzabek et al [14] reorganizes the PL requirements in

features and quality attributes or non-functional

requirements (NFR). The former can be categorized into

behavioral requirements that represent functionality or

services, and design decisions that describe how the

system should behave in particular situations.

These different types and sub-types of features can be

studied separately. Capabilities category of features

includes very different aspects: the structural aspect that

can be represented by classical domain models (UML

class diagram); the behavior facets that can be expressed

by UML use case models; and the objectives or NFR that

can be analyzed better with goal models.

The Goal Oriented Requirements Engineering proposes

an explicit modeling of the intentionality of the system

(the “whys”). Intentionality has been widely recognized

as an important point of the system, but it is not usually

modeled. The main advantages of the goal-oriented

approaches are that they can be used to study alternatives

in software requirements (it uses AND/OR models for the

different alternatives) and that they can relate functional

and NFR. A goal is an objective that the system under

consideration should achieve [21]. There are two types of

goals: (hard) goals and softgoals: goal satisfaction can be

established through verification techniques, but softgoal

satisfaction cannot be established in a clear-cut sense (it is

usually used to model non-functional characteristics of

the system) [3]. The dependence between goals and

softgoals, and consequently between functional and NFR,

can be established, by example with the relationships

defined by the NFR Framework [3] that model positive

and negative correlations between them.

The high level features usually represent the aims of

the product line and can be represent better as (hard) goals

models. Since softgoals are specifically used to introduce

the non-functional aspects, they are a good choice to

represent the more abstract features. Also, since they are

more related with the problem, and therefore to the

customers, they can be used to select a particular product,

introducing a rationale basis during the product derivation

process. A tool that can evaluate these goals and softgoals
models automatically with respect to the customer

preferences has been built to support our approach [10].

Of course, a set of traceability links between softgoals,
goals, features, and UML models must be carefully

established.

In short, we propose to limit the use of feature models

to express structural and functionally variability, using the

feature model to connect the rest of the techniques and to

allow the derivation from more abstract (goal models) to

more refined models (architectural models). An obvious

consequence is that the feature category is valuable

information that can be added to the feature diagrams. In

fact, nothing prevents us of assigning several categories to

the same feature, associating it with behavioral o

structural models (e.g. a feature group for payment types

results in a specialization class structure and a use case

diagram with <<extend>> relationships).

The UML models are conventional diagrams that are

organized in packages. In [16] we proposed a technique

where the common features are organized in a base

package, and each optional feature in a package which

includes the set of UML diagrams that are the solution

that achieve this feature. The packages are related using

the UML package merge mechanism.

The platform variants must be considered in a second

stage, as (at the requirements level) most of the variation

points are independent of the operating environment. The

main contribution the Model Driven Engineering (MDE)

paradigm is the separation of the PIM (platform

independent model) from the PSM (platform specific

11th. Workshop on Requirements Engineering

212

model). Using this approach the operating environment

category of features can be analyzed in second term, after

the capabilities features have been considered.

Finally the last two groups of features (application

domain and implementation techniques) are too specific

to introduce significant differences in the general

variability analysis. Algorithm implementation details or

legal constraints are important information about the

common aspects of the product line but not in general

from the point of view of the variability analysis.

Figure 2 summarize our proposal as combination of

several paradigms:

UML Modeling

Paradigm

PL Domain

Model

Feature Oriented

Paradigm

Goal Oriented

Paradigm

Platform Independent

Feature model
(Services, Operations,

Domain technology,

Implementation details)

Softgoals /

hard-goals

model

PL Use Case

Model

Platform Specific

Feature model
(Hardware & Software

platforms)

Model driven

Paradigm

Platform Specific

Models (Tool /

Manually Generated)

Figure 2. Combination of paradigms and variability

 The goal models represent the intention of the

product line, i.e. the high level objectives the

application must solve, and the non-functional

characteristics.

 The feature model represents the end-user

functional requirements, connected with the hard

goals of the goal models.

 The UML models organize the architecture of the

PL, connected with the feature model.

 The features that configure the operating

environment must be considered in a later stage, as

we adopt the MDE paradigm of separation of the

PIM/PSM models.

 The information about the details of frameworks,

platforms, etc. is kept apart from the platform

independent models.

Once the product line is developed, the next step is

product derivation. Figure 3 shows the schematic view of

the process of configuration of an application using our

approach: first, using the tool described in [10] we find

the optimal combination of goals and softgoals for the

satisfaction of the customer needs. This combination

originates the configuration of the feature application

model and the package configuration for the concrete

application with the basic architecture. These steps can be

totally automated. From here, two alternative ways are

open: manually complete the application or use a MDE

code generation tool. The experiences so far consist of

manually adding the user interface and persistence details

to the UML package models. The platform specific

models are based in Microsoft .NET as this platform

allows implementing directly the concept of package

merge using C# partial classes. This manual approach has

been successfully applied to the development of product

lines in the Web and mobile applications domains. An

alternative under study is to use code generation tools as

AndroMDA or OpenMDX.

But the productivity in PL development demands to

automate the construction and configuration of the diverse

PL models, as the MDE paradigm advocates. The

transformation from goal to feature model has been

treated by Yu et al. in [22] where they use a catalog of

goal patterns and maps them to their corresponding

feature constructions. The next section deals with the

analogous transformation of feature models (functional

and structural features) into architecture level models.

Model Driven Paradigm

Configure the platform

Feature Oriented ParadigmGoal Oriented Paradigm

Soft-goals and hard-goals

analysis and selection

Feature model

configuration
Goal Model

Structural/Behavioral

Feature Model

Platform Specific

Information

Generate package

configuration

Structural UML

Model

Figure 3. Combination of paradigms in the application derivation process of a product line

11th. Workshop on Requirements Engineering

213

3 Features to UML Mapping

In this section we present a catalog of commonly used

derivations of feature to UML models. A revision of the

literature has revealed that it is naive to pretend a simple

and univocal transformation from feature models to UML

diagrams. Therefore, we have adopted a pragmatic and

multi-view approach: separate the different categories of

features in a variability model and treat each of these

categories in a different way. Sochos et al. [20] have

reviewed recently the approaches apart from proposing a

new one. An analysis of previous work ([15], [13], [18],

[6], [11], [2]) have allowed a set of possible mappings

between feature and UML models to be identified. To

illustrate them we use a selection of examples extracted

from a large case study about e-commerce that uses

feature models, class models and activity diagrams [17].

We differentiate two kinds of transformations:

structural information mapped to class diagrams, and

behavioral features mapped to use case diagrams. We can

annotate the features as structural or behavioral oriented

(or both). In this article we focus on structural mappings.

Our proposal is based in the Czarnecki et al.

metamodel [8], where as we discuss before, the features

can be typed with data types (String, Integer, etc). In this

context we have identified several mappings:

 The presence of a mandatory feature of default

FEATURE type originates a class that is

associated (with a 1..1 multiplicity) with another

class that represents the parent feature.

 The presence of an optional feature of default

FEATURE type originates a class that is

associated (with a 0..1 multiplicity) with another

class that represents the parent feature.

 The presence of a mandatory feature of a simple

type, (INTEGER, STRING, DATE…, i.e. any

type different of default FEATURE type)

originates an attribute in a class that represents the

parent feature.

 The presence of an optional feature defined by a

simple type originates an optional attribute

(represented by the UML attribute multiplicity

information) in a class that represents the parent

feature.

The most common architectural equivalence of the

grouped features (alternative and OR groups) is based in

inheritance. Really, a combination of generalization and

composition relationships is needed to differentiate

alternative from OR structures (Figure 4).

CheckOut

Registered

ShippingOptions

CheckOutType

TaxationOptions

PaymentGateways CreditCard

0..1

1..1

0..1

ElectronicCheque

FraudDetection PaymentTypes

1..1 PaymentOptions

DebitCard

PurchaseOrder

1..4

1..1

Guest

Verisign

0..2

1..1

CustomPG

CheckOut

ShippingOptions

0..1

TaxationOptions

1

PaymentOptions

1

PaymentTypes1..4

CreditCard

DebitCard

PurchaseOrder

ElectronicChequePaymentGateways

0..2

FraudDetection

0..1

CheckOutType

Registered Guest

1

Verisign

CustomPG

Figure 4. Structural feature model fragment with examples of alternative and OR feature constructions

The problem is that this approach does not have into

account the difference between PL variability and the

possible variability of the products. Most authors use

stereotypes, annotating some classes as variants or

optional elements [9], [12], and others use specialized

superimposition UML diagrams [5]. We have discussed in

previous works the disadvantages of these approaches and

proposed to use a standard element of UML 2: “package

merge mechanism” that basically consists of adding

details to the models in an incremental way. According to

the specification of UML 2, <<merge>> is defined as a

relationship between two packages that indicates that the

contents of both are combined, allowing to extend the

modeled concept incrementally in each separate package.

Selecting the desired packages, it is possible to obtain a

tailored definition from all the possible ones. This

mechanism allows a clear traceability between feature and

UML models to be established.

The Table 1 combines the literature view with the

package merge based interpretations. The classical

version of Figure 4 uses only the multiplicity of the

attributes and associations to represent optional features

and is more compact. But the proposed representation is

preferable as removes any ambiguity and is directly

11th. Workshop on Requirements Engineering

214

mapped to code. The apparent complexity of the package

model reflects the real complexity of the product line

itself and it is easily handled by the current CASE and

IDE tools.

Table 1. The basic structural features and their translation to packaged class diagrams

 Feature Construction Package / Class Structure Explanation

Login (String)

LoginCredentials

Password (String)

LoginCredentials

+login: String
+password: String

Simple type features are

mapped to class

attributes. Multiplicity is

1..1 since they are

mandatory.

RegistrationInfo

ShippingAdress (String)

0..1

BillingAdress (String)

0..1

PRegistrationInfo

PBillingAdress

PShippingAdress

<<merge>>

<<merge>>
RegistrationInfo

RegistrationInfo

+ShippingAdress: String

RegistrationInfo

+BillingAdress: String

Simple type features are

mapped to class

attributes. To separate

PL and product

variability, two different

packages with

<<merge>> relationship

are created (for each

optional feature).

CheckOut

ShippingOptions

TaxationOptions

1..1

0..1

PaymentOptions

1..1

PCheckOut

CheckOut
PaymentOptions

1

TaxationOptions
1

PShippingOptions<<merge>>

CheckOut

ShippingOptions

1

Complex type features

(FEATURE) are mapped

to classes. Mandatory

features in main package

and optional in new

package with

<<merge>> relationship.

Registered

CheckOutType

Guest

1..1

PCheckOut
PRegistered

PGuest

<<merge>>

<<merge>>

Registered

CheckOutType
CheckOutType

Guest

CheckOutType

CheckOut
1

Complex type features

(FEATURE) are mapped

to classes. Alternative

features are mapped to

subtypes in new

packages.

CreditCard ElectronicCheque

PaymentTypes

DebitCard

PurchaseOrder

1..4

PCheckOut

PaymentOptions PaymentTypes1..4

CreditCard

PPurchaseOrder
PElectronicCheque

PDebitCard

<<merge>>

<<merge>>

<<merge>>

PurchaseOrder

PaymentTypes
PaymentTypes

ElectronicCheque

PaymentTypes

DebitCard

Complex type features

(FEATURE) are mapped

to classes. Common

feature is on main

package, and alternative

as different packages

(constraints are implicit

in feature model).

11th. Workshop on Requirements Engineering

215

4 Conclusions and future work

In this article, the possibilities provided by the

combination of diverse modeling paradigms to represent

and configure variability in a product line are discussed.

The use of specialized techniques have shown better

results for expressing different aspects of the requirement

variability, while the feature model continues being the

central piece of the puzzle.

 The second contribution of the article is the

identification of distinctive structures in the feature

models and the mapping of these to the correspondent

architectural diagrams. The feature mapping catalog

allows the automated creation of traceability links

between the product line feature and the architectural

models, and consequently the productivity in product line

development is improved. The final conclusion is positive

as the combination of paradigms and the mapping catalog

makes more straightforward the development process of

the product line.

As future work, we foresee the automation of the

product line development. First, the set of UML domain

and behavior models are obtained (manual completion of

these models will always be required). Then, the goal

based configuration process yields a subset of packages

that will be merged at conceptual level in a monolithic

model (using existing MDE tools). The resulting

(platform independent) model will be used as input to

code generator tools. These tools are precisely intended to

generate the platform specific models and the final code.

We are evaluating some of the best known generative

tools in order to assess the practical possibilities of this

product line and MDE alliance.

Acknowledgements

This work has been supported by the Junta de Castilla

y León (project VA018A07).

References

[1] M. Antkiewicz, and K. Czarnecki, “Feature modeling

plugin for Eclipse”. OOPSLA’04 Eclipse technology

exchange workshop. 2004.

[2] Bosch, J. Design & Use of Software Architectures.

Adopting and Evolving a Product-Line Approach. Addison-

Wesley. 2000.

[3] Chung, L., Nixon, B., Yu, E. and Mylopoulos, J. Non-

Functional Requirements in Software Engineering. Kluwer

Academic Publishers 2000.

[4] Clements, Paul C. and Northrop, L. Software product lines:

Practices and Patterns. SEI Series in Software

Engineering, Addison-Wesley. 2001.

[5] K. Czarnecki, and M. Antkiewicz, “Mapping features to

models: a template approach based on superimposed

variants”, GPCE’05, LNCS 3676, Springer, pp. 422-437.

[6] Czarnecki, K. and Eisenecker, U.W. Generative

Programming: Methods, Tools, and Applications, Addison-

Wesley, 2000

[7] K. Czarnecki and S. Helsen. “Classification of Model

Transformation Approaches”. OOPSLA’03 Workshop on

Generative Techniques in the Context of Model-Driven

Architecture, 2003.

[8] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing

cardinality-based feature models and their specialization”,

Software Process Improvement and Practice, Vol. 10, No.

1, 2005, pp.7-29.

[9] H. Gomaa. “Object Oriented Analysis and Modeling for

Families of Systems with UML”. IEEE International

Conference for Software Reuse (ICSR6), 2000, pp. 89–99.

[10] B. González-Baixauli, J.C.S.P. Leite, and J. Mylopoulos.

“Visual Variability Analysis with Goal Models”. RE’2004.

Kyoto, Japan. IEEE Computer Society, 2004. pp. 198-207.

[11] M.L. Griss, J. Favaro, and M. d'Alessandro, “Integrating

feature modeling with the RSEB”, Fifth International

Conference on Software Reuse, 1998, pp.76-85.

[12] G. Halmans, and K. Pohl, “Communicating the Variability

of a Software-Product Family to Customers”. Journal of

Software and Systems Modeling 2, 1 2003, 15--36.

[13] Jacobson I., Griss M. and Jonsson P. Software Reuse.

Architecture, Process and Organization for Business

Success. ACM Press. Addison Wesley Longman. 1997.

[14] S. Jarzabek, B. Yang, and S. Yoeun, “Addressing quality

attributes in domain analysis for product lines,” Software,

IEE Proceedings - , vol.153, no.2, 2006, pp. 61-73

[15] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.

“Feature-Oriented Domain Analysis (FODA) Feasibility

Study”. Technical Report, CMU/SEI-90-TR-21, Software

Engineering Institute, Pittsburgh, PA 15213

[16] M.A. Laguna, B. González-Baixauli, and J.M. Marqués,

“Seamless Development of Software Product Lines:

Feature Models to UML Traceability”. GPCE 07. Salzburg,

Austria 2007

[17] S. Lau, “Domain Analysis of E-Commerce Systems Using

Feature-Based Model Templates”, MASc Thesis, ECE

Department, University of Waterloo, Canada, 2006.

[18] K. Lee, K.C. Kang, W. Chae, and B.W. Choi, “Feature-

Based Approach to Object-Oriented Engineering of

Applications for Reuse”, Software: Practice and

Experience, 30(9), 2000, pp. 1025-1046.

[19] P.-Y. Schobbens, P. Heymans, and J.C. Trigaux, “Feature

diagrams: A survey and a formal semantics”. In RE, 2006

pp. 136–145.

[20] P. Sochos, I. Philippow, and M. Riebish. “Feature-oriented

development of software product lines: mapping feature

models to the architecture”. Springer, LNCS 3263, 2004,

pp. 138-152.

[21] A. van Lamsweerde, “Goal-Oriented Requirements

Engineering: A Guided Tour”, IEEE Symposium

Requirements Engineering, 2001, pp. 249-262

[22] Y. Yu, A. Lapouchnian, S. Liaskos J. Mylopoulos and

J.C.S.P. Leite. “From goals to high-variability software

design”, 17th International Symposium on Methodologies

for Intelligent Systems (ISMIS'08), 2008, pp. 1-16.

11th. Workshop on Requirements Engineering

216

