
Using Constraint Programming for the Automatic
Detection of Conflicts in Quality Requirements�

Antonio Ruiz–Cortés, Amador Durán, Rafael Corchuelo and Miguel Toro

E.T.S. Ingenieros Informáticos. Universidad de Sevilla
Avda. de la Reina Mercedes s/n, Sevilla 41012. Spain

aruiz@lsi.us.es, http://tdg.lsi.us.es

Abstract

Requirements negotiation is quite an interesting, ongoing research area. Current requirements
engineering models usually propose a negotiation process with similar methods and goals. Unfor-
tunately, only a few have partial automatic support. In this paper, we revisit one of the most mature
models, Boehm’s Win–Win model. Win–Win is a qualitative, process–oriented model so that it is
specially suited to be used at the early stages of requirements engineering, when knowledge about
requirements is still vague, but not for quantitative, product–oriented contexts where a more precise,
exact knowledge about the requirements is needed.

In this paper, we present a proposal to extend and refine Win–Win in order it can be used in
product–oriented contexts. The main benefit of our approach is that the same conceptual model
for requirements negotiation can be used during all software development process, instead of using
different models in different phases.

Keywords: requirements negotiation, quality requirements.

1 Introduction

Boehm’s spiral model for requirements engineering (RE) is one of the most widely known in
the literature [1, 2, 17]. According to [6], it can be classified as a qualitative, process–oriented
method because it is intended to be used at the early stages of requirements engineering, when
the requirements are still vague, and because conflict identification is oriented towards reaching
decisions about the architecture of a system.

Win–Win is supported by QARCC (Quality Attribute Risk and Conflict Consultant), a tool
that can identify conflicts in quality requirements (QR) by using an auxiliary knowledge base
[3]. Turning the detection of conflicts into an automated process is interesting to requirements
engineers, managers of applications based on web services [20, 21, 23], developers of agent
societies [15], and so on.

�The work reported in this article was partially funded by the Spanish Interministerial Commission on Science
and Technology under grant TIC 2000–1106–C02–01

Win-win
negotiation model

Stakeholders

Individual
requirements

(win conditions)

Agreement

Figure 1: Overall view of the Win–Win requirements negotiation process.

The approach presented in this paper is based on the idea that some problems addressed by
quantitative, product–oriented approaches can also be addressed by extending the conceptual
framework behind Win–Win. The main benefit of our approach is that the same conceptual
model for RE can be used during the whole software development process, instead of using
different models. Our proposal relies on two conjectures: (1) every QR can be formally speci-
fied as a mathematical constraint, and (2) the requirements engineer is able to elicit, totally or
partially, the flexibility degree of stakeholders on QRs before the negotiation process can be
started. If we assume these conjectures are true, our proposal allows (i) to detect conflicts more
precisely, and (ii) to take provider stakeholders into account.

The rest of the paper is organized as follows. In Section 2, we present an overview of the
Win–Win model; next, our approach for enhancing Win–Win is presented in Section 3; finally,
we present some conclusions in Section 4.

2 The Win–Win negotiation model

The Win–Win model [1, 2, 17] is based on Theory W [4], whose main motto is “make everyone
a winner”. Figure 1 illustrates this process. In projects with multiple stakeholders, conflicts
amongst win conditions, i.e. individual requirements, arise frequently. When a conflict is de-
tected, all related stakeholders are reported to propose options to solve the conflict. Once all
conflicts are solved, it is said that an agreement is attained because the win conditions of which
it is composed satisfy everyone’s needs.

2.1 Win conditions

A win condition is a stakeholder’s requirement considered important and beneficial. Formally,
if space � contains all possible requirements specifications, a win condition can be viewed as
a constraint on � that splits it into mutually exclusive subsets of requirements specifications
that do or do not satisfy the win condition. The set of win conditions associated with a given
stakeholder defines a win region, as depicted in Figure 2. Win conditions and win regions are
formally described using set theory [17], so that the win region corresponding to ��� stakeholder
is defined as:

�� �
��

���

�������

300 WER 2002

R

r
2

r
3

r
1

w
11

R(w
11
)

r
2

r
3

r
1

W
1

R

w
11

w
12

w
13

Figure 2: Graphical interpretation of both a win condition and a win region.

W
2

W
1

r
10

r
9

R

W
3

r
4

r
5

r
1

r
2

r
3

r
6

r
8

r
7

Figure 3: Graphical interpretation of a conflict amongst three stakeholders.

where ������� represents the set of requirements which satisfy the � �� win condition of the ���

stakeholder, i.e.,
������� � �� � � � � satisfies ����� (1)

The main problem with this definitions is that Boehm’s proposal lacks a systematic, formal
way to express requirements and win conditions. Instead, natural language is used, which
complicates determining if a requirement satisfies a win condition.

2.2 Conflicts

When the intersection of the win regions of two or more stakeholders is empty, it is said that
there is a conflict amongst them, as illustrated in Figure 3. Given a set of win conditions, differ-
ent conflicts may arise, and each one involves a different conflicting group of win conditions,
denoted by ��, that satisfies �

�����	�

������� � � (2)

For instance, assuming that a client’s win conditions are given by ���� = “The budget shall
not exceed � 6000” and ���� = “The system shall be interoperable through CORBA 2.2”; also
assuming that an architect’s win conditions are ���� = “The budget shall be � 7000” and ���� =
“The system shall use SOAP”. In such a case, two conflicts would arise, being �� � ������ �����,
and �� � ������ �����.

The main problem with this approach is, again, the lack of formality, which implies the
detection of conflicts is error-prone, and may easily lead to situations in which a conflict is not
detected at the appropriate time.

2.3 Options and agreements

Once conflicts have been detected, they are issued to the corresponding stakeholders so that
negotiation can be started. Solving a conflict necessarily requires one stakeholder, at least, to

Using Constraint Programming for the Automatic Detection of Conflicts 301

S
2

S
1

r
10

r
9

R

S
3

r
4

r
5

r
1

r
2

r
3

r
6

r
8

r
7

Figure 4: A graphical interpretation of the weakening process.

relax or weaken some of his or her win conditions, which implies that he or she has to yield
in its original conditions to reach an agreement, as illustrated in Figure 4. Thus, an option is
defined as an alternative that is proposed to resolve a conflict. For a conflict ��, an option 	� is
a proposed relaxation of the set of win conditions involved in the conflict. An option extends a
win region (W) to a satisfactory (S) region, as depicted in Figure 4.

In general, solving all the conflicts arisen during a negotiation may be carried out by com-
bining different groups of options. Each combination leads to a different agreement, denoted
by
�, which satisfies �

��

���
�
�

����

���� �� �

where ��

��� denotes either a weakened win condition or a primary one.

2.4 Automated detection of conflicts

As previously mentioned, the semiautomatic conflict detection implemented in QARCC relies
on a knowledge base (KB), which stores well–known conflicts. Table 1 shows a partial view
of a KB in which we state that there exist several strategies to endow the architecture of a
particular system with a given feature. Each strategy establishes different relationships between
the desired quality attribute and the rest.

The relationships between quality attributes are classified as either conflicting or cooper-
ative. Two attributes are said to be conflicting if the value they have cannot be improved or
worsen simultaneously. For instance, a possible strategy for portability is layering, which rein-
forces interoperability and reusability, and may conflict with the cost, schedule or performance
attributes: if you attempt to increase portability, this may have a negative impact on perfor-
mance, and the project might become more costly, and the initial schedule might not be met;
however, if you do not worry about portability, the system might run faster, more effectively,
and the project might be terminated in less time with smaller costs.

From this point, the identification process works as follows: QARCC is triggered when
a stakeholder enters a new condition; it then checks if its quality attributes conflict with the
QRs related to previous conditions; if so, a potential conflict has just been detected and the
stakeholders must negotiate (c.f. Section 3.3).

302 WER 2002

Table 1: Quality–attribute strategies and relations (taken from [3]).
Primary attribute Architecture strategy Cooperative attributes Conflicting attributes

Assurance Input checking Interoperability, usability Cost, schedule, perfor-
mance

Redundancy Cost, schedule, perfor-
mance, evolvability, us-
ability

Interoperability Input checking Assurance, usability Cost, schedule, perfor-
mance

Evolvability, portability Layering Interoperability, reusabil-
ity

Cost, schedule, perfor-
mance

3 Our proposal

In this section we show some drawbacks that prevent Win–Win from addressing some problems
that are usually solved by quantitative, product–oriented methods; we also enhance the model
so that it can deal with such problems.

3.1 Specification of quality requirements

In order to avoid different interpretations of requirements by different stakeholders, they need
to be specified precisely and unambiguously. In Win–Win, win conditions are not usually ex-
pressed in a rigorous way. For instance, “documents must be delivered in multiple formats” or
“developer training must be inexpensive” are examples found in [13]. The precision of these win
conditions can be enough for detecting potential conflicts such as “the more formats needed, the
more expensive training is”, but they are clearly insufficient in general, and the lack of formality
may lead to costly errors.

The basic assumption in our approach is that every QR can be both interpreted and specified
as a mathematical constraint. The main reason supporting this assumption is that a QR can
always be expressed in natural language as a constraint over a set of quality attributes (QAs)
[7, 11, 17, 9] that usually range over domains such as integers, booleans, reals, or enumerates,
and the relationships amongst them are usually expressed in terms of arithmetic operators. In
[6], the authors present a list that includes over 150 quality attributes, and none of them is
out of this scope. Our experience [8, 20, 22, 21] also suggests that this conjecture may be
considered valid in an ample variety of systems, and it allows us to interpret requirements as if
they were constraint satisfaction problems (CSP). This implies we can prove or refute properties
automatically by using well–known constraint solvers.

For instance, if we want to express performance QRs, we can consider two attributes: the
time to failure (���) over the real domain ������, and the time to repair (���) over the real
domain ������. Then, we can specify the QR “time to failure must be 100 hours at least and
time to repair must be under 1 hour” as the mathematical constraint ��� � ��� 	 ���
 �.

This approach can also be applied to win conditions. For instance, the win condition infor-
mally expressed in [13] as “documents shall be delivered in multiple formats” can be formally
expressed as �����	�������� � � ��� , where ��� represents the set of available
formats. Furthermore, the win condition “developer training must be inexpensive” can be ex-
pressed as���
 �����, if a developer training cost (���) under 10% of total development

Using Constraint Programming for the Automatic Detection of Conflicts 303

cost (��) is considered inexpensive.

Mathematical constraints allow to capture the semantics behind a requirement, and thus
allows the automatisation of the tasks that we present in the following section.

3.2 Checking properties automatically

3.2.1 Consistency

The simplest property of a QR that can be interpreted as a CSP is consistency. A QR is con-
sistent as long as its description does not contain any contradiction. Formally, requirement � is
consistent if and only if its associated constraint �� is satisfiable:

� is consistent � ������� � ����

where ��� denotes the satisfiability function associated with the constraint solver used. ���
takes a constraint � and returns one of the following values: ���� if � is satisfiable, ����� if
it is not, and if it is not possible to determine whether � is satisfiable or not. For instance,
CLP(�) [14] is not able to determine if the constraint �� � � is satisfiable because it can only
deal with (semi-) linear constraints. Thus, ������ � �� would return if CLP(�) was used as
the underlying solver. On the contrary, it would return ���� if we used ILOG Solver [12].

We have not restricted the kind of constraints we can use to express QRs, thus offering the
maximum expressiveness, but no general constraint solver able to solve any constraint exists.
Notice that requirement � is considered to be inconsistent if ������� �, which implies we
analyse it from a conservative point of view. This might be wrong, but if it is not possible to
solve all needed constraints, our approach will not lead to an inconsistent system. Anyway,
most problems we have faced do only require linear constraints that can be easily solved by
using the well–known SIMPLEX method [5]. Thus, our decision does not substantially reduce
the applicability of our proposal.

3.2.2 Satisfiability

Another interesting property of QRs is satisfiability. A QR satisfies another QR when the con-
straint formed by the conjunction of constraints from both QRs is satisfiable, i.e.,

�� satisfies �� � ������� 	 ���� � ����

This definition allows to define the operational semantics of the win condition regions in Win–
Win. Notice that no precise definition of the semantics of this predicate have been provided so
far, despite the fact that it constitutes the core of Win–Win.

3.2.3 Conformance

The definition of satisfiability presented in previous section was also adopted by the Object
Management Group (OMG) for the definition of their trading service [19], and by the automatic
negotiation models used in distributed agent platforms [15]. This approach is very useful when
the semantics of a win region is the same for all stakeholders. We refer to this as customer
semantics.

304 WER 2002

V1 V2 V3 V4 V5 ... Vn

Vn+1 Vm

Satisfiability Conformance (C1 → C2)

V1 V2 V3 V4 V5 ... Vn

Vn+1 Vm

C1 solutionsC2 solutions C1 solutionsC2 solutions

Figure 5: Graphical interpretation of both satisfiability and conformance.

Nevertheless, there are situations in which the semantics of a win region is not the same
for all stakeholders. For instance, consider a situation in which a requirements engineer has
elicited the win condition “the time to repair must be 60 minutes at most”, i.e., ���
 	�, and
the system architect states that “the time to repair will not exceed 70 minutes”, i.e., ���
 ��.
Using customer semantics, it is easy to prove that ���
 �� satisfies ���
 	�. We might
consider that ���
 	� is an agreement for both win regions (c.f. Section 2.3). However, it
cannot be considered satisfactory from a customer/provider point of view because if they are
disconnected, i.e., they do not meet explicitly to clarify the semantics, the provider might supply
��� � 	
 , which does not satisfy our customer’s needs.

In quality–aware distributed systems [10, 16] and applications based on web services [21,
20], a stronger notion of satisfiability, called conformance is proposed. If �� and �� are QRs,
then �� is said to be conformant to ��, denoted as �� � ��, if and only if the set of solutions to
��� is a subset of the solutions to ��� . This relationship is known as the implication constraint in
[18], and it is defined as

�� � �� � ������� 	 ����� � �����

3.3 Detecting conflicts automatically

The semi–automatic conflict detection proposed in [3], later enhanced in Section 2.4, is based
on a relatively simple method. It is suitable to detect conflicts between win conditions at early
stages of development, but it has two important drawbacks when compared to quantitative,
product–oriented methods.

First, it does not address the quantification of the degree of conflict. This implies that
conflicts detected automatically must be classified as potential conflicts, since it is possible to
consider non–conflicting requirements as if they were in conflict. For instance, interoperability
can be achieved with different solutions such as sockets, CORBA IIOP, W3C SOAP, and so
on. These solutions decrease communication performance, but not to the same extent: SOAP is
slower than sockets and it consumes more bandwidth; CORBA IIOP is slower than sockets, but
faster than SOAP. Thus, it is possible that some conflicts exist if SOAP is used, but they might
disappear if sockets were used.

Secondly, Win–Win needs all potential conflicts to be registered in a KB that must be kept
up–to–date. Maintaining such a KB is not a trivial task because it becomes more and more
error–prone and tedious as the number of quality attributes and relationships amongst them in-
creases. Furthermore, registered conflicting relationships must be checked periodically because
conflicts may change as time goes by. For instance, three–tier architectures are very popular
in today’s Internet world although they may have a negative impact on performance, but this is

Using Constraint Programming for the Automatic Detection of Conflicts 305

not considered a serious conflict; ten years ago, however, performance was so crucial that such
architectures were not popular at all, i.e., the conflict was more serious ten years ago.

Both problems may be avoided if we use constraints to specify QRs and interpret the de-
tection of conflicts as checking satisfiability or conformance. In equation 2, the condition that
helps requirements engineers detect that there is a problem was

�

�����	�

������� � �

which can now be formulated as

����
��

���

������ �� ����

where ����� represents the constraint associated with the win condition ����. Roughly speaking,
a conflict exists if and only if it is not possible to prove the existence of a common solution
to all win conditions. Notice that cases in which satisfiability cannot be proved are considered
to be potential conflicts. We might be wrong, but this solution prevents conflicts from going
unnoticed.

Obviously, this definition is valid as long as all stakeholders assume customer semantics.
If some stakeholder are playing a provider role, the absence of conflicts can be formulated as
follows:

������ 	 �
��

���

���� �� ����

where �� represents the constraint associated with the provider stakeholder win region and ���
represents the ��� customer stakeholder win region.

4 Conclusions

In this paper, we have enhanced Win–Win so that it can be used in quantitative, product–oriented
contexts. Our idea consists of associating mathematical constraints with each win condition,
which allows to automate the detection of conflicts. Furthermore, we have added a new notion
called conformance that allows to capture provider semantics. This proves that the world of
quality requirements can be significantly enhanced if we use mathematical constraints to capture
their semantics in a precise way.

References

[1] B. Boehm, P. Bose, E. Horowitz, and M.-J. Lee. Software requirements as negotiated win
conditions. In Proc. of the First Intl. Conference on Requirements Engineering, (ICRE’94),
pages 74–83. IEEE Press, 1994.

[2] B. Boehm, P. Bose, E. Horowitz, and M.-J. Lee. Software requirements negotiated and
renegotiation aids: A Theory–W based spiral approach. In Proc. of the 17�� Intl. Confer-
ence on Software Engineering (ICSE’95). IEEE Press, 1995.

[3] B. Boehm and H. In. Identifying Quality–Requirements Conflicts. IEEE Software,
12(6):25–35, Marzo 1996.

306 WER 2002

[4] B.W. Boehm and R. Ross. Theory–W Software Project Management: Principles and
Examples. IEEE Transactions on Software Engineering, 15(7):902–912, 1989.

[5] K.H. Borgwardt. The simplex method: A Probabilistic Analysis. Springer–Verlag, 1987.

[6] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. Non–Functional Requirements in Software
Engineering. Kluwer Academic Publishers, 2000.

[7] A. M. Davis. The Analysis and Specification of Systems and Software Requirements.
pages 119–144.

[8] A. Durán, B. Bernárdez, A. Ruiz-Cortés, and M. Toro. A requirements elicitation ap-
proach based on templates and patterns. In Proc. of the 2� Workshop on Requirements
Engineering (WER’99), pages 17–29, Buenos Aires, Argentina, 1999.

[9] X. Franch. Systematic formulation of non–functional characteristics of software. In Proc.
of the International Conference on Requirements Engineering (ICRE’98), Colorado, USA,
April 1998. IEEE Press.

[10] S. Frolund and J. Koistinen. Quality–of–Service Specification in Distributed Object Sys-
tems. Distributed Systems Engineering Journal, 5(4), 1998.

[11] T. Gilb. Principles of Software Engineering Management. Addison–Wesley, 1988.

[12] ILOG. ILOG Solver 4.0. User’s manual. 1997.

[13] H. In, D. Olson, and T. Rodgers. Multi–criteria preference analysis for systematic require-
ments negotiation. In Proc. of the IEEE International Computer Software and Applications
Conference (COMPSAC’2002), 2002.

[14] J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The language and system. ACM
Transactions on Programming Languages and Systems, 14(3):339–395, 1992.

[15] N.R. Jennings, P. Faratin, A.R. Lomuscio, S. Parsons, C. Sierra, and M. Wooldridge. Au-
tomated negotiation: Prospects, methods and challenges. International Journal of Group
Decision and Negotiation, 10(2):199–215, 2001.

[16] J. Koistinen and Seetharaman. Worth–based multi-category quality–of–service negotia-
tion in distributed object infrastructures. In Proc. of the Second International Enterprise
Distributed Object Computing Workshop (EDOC’98), La Jolla, USA, 1998.

[17] M. J. Lee. Foundations of the WinWin Requirements Negotiation System. Phd. thesis,
University of Southern California, August 1996.

[18] K. Marriot and P.J. Stuckey. Programming with Constraints: An Introduction. The MIT
Press, 1998.

[19] OMG. Trading object service specification. Technical report, Object Management Group,
2000. Version 1.0.

[20] A. Ruiz-Cortés, R. Corchuelo, and A. Durán. An automated approach to quality-aware
web applications. In Proc. of the 4�� International Conference on Enterprise Information
Systems (ICEIS’2002), pages 995–1000, Ciudad Real, Spain, April 2002.

Using Constraint Programming for the Automatic Detection of Conflicts 307

[21] A. Ruiz-Cortés, R. Corchuelo, A. Durán, and M. Toro. Automated support for quality
requirements in web-services-based systems. In Proc. of the 8�� IEEE Workshop on Future
Trends of Distributed Computing Systems (FTDCS’2001), pages 48–55, Bologna, Italy,
November 2001. IEEE Press.

[22] A. Ruiz-Cortés, R. Corchuelo, R.M. Gasca, and M. Toro. Aplicando técnicas de satis-
facción de restricciones para comprobar la conformidad de aplicaciones WEB. In Actas de
la Conferencia de la Asociación Espãnola para la Inteligencia Artificial (CAEPIA’2001),
pages 531–540, 2001.

[23] S.Y.W. Su, C. Huang, and J. Hammer. A replicable web–based negotiation server for e–
commerce. In Proc. of the 33rd Hawaii International Conference on Systems Sciences,
pages 1–8. IEEE Press, 2000.

308 WER 2002

