
An Approach to Extract a Conceptual Model from

Natural Language Specifications

Leandro Antonelli
1
, Juliana Delle Ville

1
, Matias Alfredo Adorno

1
, Letizia Paola

Ballestero
2
, Santiago Andrés Cecconato

1
, Alejandro Fernandez

1 3
, Gregorio Maclen

2
,

Giuliana Maltempo
1
, Juliana Edda Mattei

2
, Luciana Tanevitch

1
, Diego Torres

1 3 4
,

1Lifia, Fac. de Informática, UNLP, La Plata, Bs As, Argentina
2Fac. de Informática, UNLP, La Plata, Bs As, Argentina

3 Comisión de Investigaciones Cientificas (CICPBA)
4 Departamento de Ciencia y Tecnología, UNQ

{leandro.antonelli, juliana.delleville, matias.adorno,

santiago.cecconato, alejandro.fernandez, giuliana.maltempo,

luciana.tanevitch, diego.torres}@lifia.info.unlp.edu.ar

{letiziapaolaballestero, gregorio.maclen,

juliana.mattei.29792}@gmail.com

Abstract— Requirements engineering is a critical phase in software

development. Errors committed in the requirements become costly problems

later on. Artifacts described in natural language are the most suitable for the

participants of the process: experts and the software development team. But,

natural language can have some issues because of the diversity of participants'

writing and reading specifications. Thus, it is necessary to guide and assist the

production of these artifacts. This paper proposes an approach to acquire

specifications collaboratively checking the writing style and synthesizing a

conceptual model to summarize the specification to help participants to have an

overview of the knowledge gathered in order to provide a consistent and

coherent model. This paper also describes a prototype that uses natural

language processing and artificial intelligence tools to support the process.

Keywords- requirements; conceptual model; natural language.

1. Introduction

Requirements engineering is a critical stage of software development. Errors

made at this stage can cost up to 200 times to repair [5]. In this stage, two different

groups of people participate: clients that state their needs and knowledge to be

included in the software application, and the development team that has to understand

the specification to provide a software application that satisfies it. Experts and

development team belong to different worlds and use different languages [28]. The

experts use the language of the domain while the development team uses a computer

science language. To cope with this communication gap it is important to use artifacts

Proceedings of the 26th Workshop on Requirements Engineering (WER23), August 15-17, 2023, Porto Alegre, RS, Brazil.
DOI: 10.29327/1298356.26-12

mailto:letiziapaolaballestero@gmail.com
mailto:gregorio.maclen@gmail.com

in natural language [23]. Nevertheless, natural language specifications can have many

defects [17] [25]. For example, they can have an ambiguity that can appear in

different ways. One type of ambiguity is vagueness; that is, expressions can have

situations that are not defined (for example, borderline cases) [4].

Kernel sentences [18] [10] also known as basic sentences, are declarative

constructions, in active voice, always affirmative with only one verb. Requirements

specifications generally are described using long sentences, and this characteristic

increases the possibility of the presence of ambiguity in them [14]. Thus, with the

objective of simplifying the sentences and reducing their complexity, it is very useful

to use kernel sentences to specify requirements [7]. Kernel sentences can help to

reduce some defects in the requirements specification, but there are some other issues

like duplication or inconsistency, that need a model synthesis technique to summarize

and organize the requirements [35]. Moreover, the synthesis of a large set of

requirements is a good technique to cope with the complexity [20] [13], and to

improve the quality of the requirements regarding cohesion and consistency [11].

This paper proposes an approach that receives a natural language specification

as input and provides some feedback by analyzing the text according to the kernel

sentences writing style, and derives from the text a conceptual model. It is important

to mention that the input of the approach (the specification) should not have any

specific format. It should only be a specification in natural language. Then, the

conceptual model obtained as output includes concepts, attributes and relationships.

The rest of the paper is organized in the following way. Section 2 describes some

background about kernel sentences. Section 3 details our contribution, the proposed

approach. Section 4 describes the tool to support the process. Section 5 reviews some

related work. Finally, Section 6 discusses some conclusions.

2. Kernel Sentence

A kernel sentence is a simple construction with only one verb. It is also active,

positive and declarative. For example, let’s consider the kernel sentence “The client

deposits on the account.” It states that the subject “client” performs an action

(“deposits”) on a certain object (“account”). Another example of a kernel sentence is

“The client of the bank opens an account”. This sentence has the same structure while

it describes a different action (“opens”), and the subject is described in more detail

(“client of the bank”). This is a very simple example, and we know that “client” and

“client of the bank” refers to the same subject, but in a complex new domain, this

synonym could not be so easy to identify. Now, consider a couple of sentences that

are not kernel sentences. The first one, “The client deposits and adds interest into the

account”, has two verbs. And it is no completely correct. It is right that the client

deposits money into the account, but the interest is added by the bank and not by the

client. That is why simple (kernel) sentences are better for specifying software. The

second one, “The account is opened” is written in passive voice, and it also misses the

real subject who performs the action. It could be the client, but it also could be the

company that the client works for and decided to open an account to pay his salary.

These are two simple examples of how can kernel sentences writing style help to

improve specifications.

164

3. The Proposed Approach

The proposed process has the objective of providing a conceptual model that

summarizes a set of artifacts specified through natural language. The proposed

approach analyzes every sentence to obtain concepts, relations and behavior. As an

intermediate result, the proposed approach suggests checking some characteristics of

the sentences in order to improve their description according to the kernel sentences

philosophy. The process proposed considers two different activities: (i) kernel

sentence checking, and (ii) conceptual model derivation. The specification is the input

of the approach, which is provided to the kernel sentence checking activity. As a

result of this activity, some feedback is provided to the experts. Then, the conceptual

model activity produces the output. The proposed approach provides some rules to

identify concepts, relationships and behavior. Moreover, two sets of words (or

expressions) are considered to help the application of the rules: the set of candidate

concepts and the set of excluded concepts (both sets can also be empty).

Let’s consider the following example with one specification that does not satisfy

kernel sentence principles: “The client of the bank opens and closes an account. The

client deposits and withdraws in the account.” The proposed approach will provide

the feedback that both sentences have more than one verb. Then, considering that the

set of the candidate and the excluded concepts are empty, the approach will identify

the following concepts: “client” and “account”. The concept “client” will have no

behavior and the concept “account” will have the behavior: “open”, “close”,

“deposit”, and “withdraw”. Finally, the concept “client” will have an association with

the concept “account”. Figure 1 summarizes the proposed approach and the example.

Figure 1. Simple derivation of the conceptual model

Multiple
verbs

Candidate concepts {}
Excluded concepts {}

kernel sentences checking

Conceptual model derivation

The client of the bank opens
and closes an account.
The client deposit and

withdraw in the account

client

account

open
close
deposit
withdraw

Experts / Analysts

165

The first activity, kernel sentence checking, relies on analyzing the structure of

the sentences used in the specification to assess whether they satisfy the philosophy of

the kernel sentences or not. Four checking are performed: (i) tacit subject, (ii)

multiple verbs, (iii) passive voice, and (iv) the presence of adjectives and adverbs.

The second activity consists of deriving the conceptual model, which is performed

through the identification of the following elements: (i) concepts, (ii) behavior, and

(iii) relationships (two types of relationships: composition and association).

The first task, the identification of concepts, relies on identifying the nouns [3]
that can be found as the subject and the direct object of the sentence. For example,

“The client opens an account” sentence has two nouns “client” and “account”, and

both should be identified as concepts. This task is enriched with two sets provided by

the experts: a set of candidate concepts and a set of excluded concepts. Since

requirements use domain-specific expression it is valuable for these sets to avoid the

biases of the automatic identification [13]. These candidate and excluded concept sets

are simple lists of words and expressions that are used in combination with the noun

identification to identify complex expressions as noun or to compare with the nouns

identified to discard it. The prototype described in the following section uses these

lists to train a machine-learning component. Let’s consider the sentence, “The client

of the bank opens an account”. There are two nouns in the subject: “client” and

“bank”; thus, the rule will identify both as different concepts. Nevertheless, the

concept “client of the bank” is a concept including two nouns. Thus, candidate

concepts set should include “client of the bank” to identify it. Let’s consider the

sentence “The client losses his card,” where the concept “card” is beyond the scope of

the system. To avoid being identified, “card” should be included in the excluded

concepts set.

The second task, the identification of behavior, relies on identifying verbs in

between two concepts. Particularly, the verb is a behavior of the second concept [3].

Let’s consider the sentence “The client opens an account” the verb “opens” should be

defined as a behavior associated to “account”.

The third task, the identification of relationships, can be split into two subtasks:

the identification of composition and association. The composition can be identified

by looking for concepts (nouns) that appear on the same side of the verb [19]. Let’s

consider the sentence, “The client of the bank opens an account”. If “client of the

bank” is not added as a concept candidate set, two concepts are identified “client” and

“bank”. Since both appear in front of the verb, “client” should be part of “bank” (the

first noun is part of the second one). Association can be identified by looking for

concepts (nouns) that appear on different sides of the verb [3]. Let’s consider the

sentence “The client opens an account”; the concept “client” is associated with the

concept “bank”.

4. Tool Support

A software prototype that can be used to support the application of the proposed

approach was implemented. The prototype is a web application implemented

following a service-oriented architecture. The core of the application and its services

are implemented in Python [29], while the web components are implemented with

166

Django [12], and the APIs are implemented with Flask [15]. Python [29] is also used

to communicate to the Spacy [33] and the NTLK [26] libraries used to deal with

natural language processing, as well as TensorFlow [34] and Sklearn [32], the

machine learning components. These two technologies are particularly used to

improve the identification of concepts as a complement of the rules. They are trained

with the candidate and excluded concepts set. Finally, the framework Plant UML [27]

is used to display the model. It is important to mention that the prototype includes

many libraries because is a framework that can be extended to provide different

functionality easily. The prototype implements two roles of users, (i) administrators of

the projects and (ii) experts/analysts. The administrator of the projects can create

projects by adding users and defining the type of artifacts they are going to use. The

experts and analysts can add contributions, that is, add new artifacts or edit artifacts

created by another one. While the user types the text, the application checks whether

the sentence satisfies the characteristics of a kernel sentence. If something wrong is

detected, the application informs the issue.

5. Related works

Shuttleworth et al. [31] propose a semi-automatic approach to generate a

conceptual model from descriptions of a phenomenon. They use pattern-based

grammatical rules and an NLP dependency parser as we do. Nevertheless, they do not

use machine learning techniques. Robeer et al. [30] propose to automatically derive

conceptual models from User Stories. Their conceptual model is not as rich as ours.

Lucassen et al. [24] are also concerned about providing a conceptual model. This

approach is automated with no human participation. We believe that human

participation is vital to building the knowledge iteratively. Fliedl et al. [16] present a

strategy to perform the analysis of complex sentences such as 'if/then constructions; it

is interesting the analysis of conditional sentences. Letsholo et al. [22] propose a tool

for automatically constructing analysis models that relies on a set of conceptual

patterns. It is an interesting approach, although the results are conditioned by the

patterns used. Kashimira et al. [21] also deal with natural language specification to

derive a conceptual model, but they specifically derive an entity-relationship model.

Al-Safadi et al. [1] proposed a semi-automated approach for the design of databases

in enhanced-ERD notation using semantic analysis of the content. Bogatyrev et al. [6]

present a framework for conceptual modeling that combines the usage of conceptual

graphs and Formal Concept Analysis.

6. Conclusions and future work

This paper proposes an approach to derive a conceptual model from

specifications written in natural language. Moreover, the proposed approach also

checks the written style and suggests if necessary to improve the style according to

the kernel sentences philosophy. We have performed a preliminary evaluation of the

applicability of the process using the Systems Usability Scale (SUS) [8] [9]. Although

SUS is mainly used to assess the usability of software systems, it was proven to be

167

effective in assessing products and processes [2]. The proposed approach can be used

in different scenarios. It can be used to assist a single analyst eliciting from a large

number of sources or it can also be used in a collaborative elicitation process where

many contributors provide their requirements. In both cases, the objective of the

proposed approach is to provide an overview of the whole consolidated knowledge in

order to help to write a consistent and coherent specification. This approach is part of

a bigger approach. We are working in a big process that considers different inputs:

large documents (produced for a legacy system), short pieces of information

(produced by instant messaging or similar), and specification produced by experts.

Although we have developed and tested some pieces of this general approach, we

have to continue working on the development of the tool, mainly on usability and

performance issues.

Acknowledgment

This paper is partially supported by funding provided by the STIC AmSud program,

Project 22STIC-01.

References

1. Al-Safadi, L. A. E.: “Natural Language Processing for Conceptual Modeling.” J. Digit.

Content Technol. its Appl. 3, pp 47-59, 2009.

2. Bangor, A., Kortum, P. T., Miller, J. T.: "An empirical evaluation of the system usability

scale." Intl. Journal of Human–Computer Interaction 24.6, pp. 574-594, 2008.

3. Bashir, N., Bilal, M., Liaqat, M., Marjani, M., Malik, N., Ali, M.: "Modeling Class

Diagram using NLP in Object-Oriented Designing," 2021 National Computing Colleges

Conference (NCCC), Taif, Saudi Arabia, pp. 1-6, 2021.

4. Berry, D., Kamsties, E. and M. Krieger. From Contract Drafting to Software Specification:

Linguistic Sources of Ambiguity. Handbook, University of Waterloo, 2003.

5. Boehm, B.W.: Software Engineering, Computer society Press, IEEE, 1997.

6. Bogatyrev, M., Samodurov, K.: Framework for Conceptual Modeling on Natural

Language Texts, CDUD@CLA, pp 13-24, 2016.

7. Boyd, N. S.: “Using Natural Language in Software Development.” In: Journal of Object-

Oriented Programming - Report on Object Analysis and Design, 11-9, 1999

8. Brooke, J.: “SUS-A quick and dirty usability scale” Usability evaluation in industry,

189(194), pp. 4-7, 1996.

9. Brooke, J: "SUS: a retrospective", Journal of usability studies 8.2, pp.29-40, 2013.

10. Chomsky, N.: The Logical Structure of Linguistic Theory. Plenum Press, New York, 1975.

11. Dick, J., Hull, E., Jackson, K.: Requirements Engineering, Springer, fourth edition, 2011.

12. Django, https://www.djangoproject.com/, accessed: 2023-03-05

13. Duarte, R. B., Junior, J., Araújo, R., Wanderley, F., Lencastre, M.: “ Uma Abordagem

Colaborativa de Modelagem Conceitual de Informação utilizando Mind Maps.” Workshop

on Requirments Engineering, CIBSE, pp 575 588, 2014.

14. Ferrari, A., Spagnolo, G. O., Gnesi, S.: "PURE: A Dataset of Public Requirements

Documents," 2017 IEEE 25th International Requirements Engineering Conference (RE),

Lisbon, Portugal, 2017, pp. 502-505, doi: 10.1109/RE.2017.29.

168

https://dblp.org/pid/186/6481.html
https://dblp.org/db/conf/cla/cdud2016.html#BogatyrevS16
http://www.educery.com/papers/rhetoric/road/
https://www.djangoproject.com/
https://dblp.org/pid/46/8976.html

15. Flask, https://flask.palletsprojects.com/, accessed: 2023-03-05

16. Fliedl, G., Mayerthaler, W., Winkler, C., Kop, C., Mayr, H. C.: "Enhancing requirements

engineering by natural language based conceptual predesign," IEEE SMC'99 Conference

Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat.

No.99CH37028), Tokyo, Japan, pp. 778-783, 1999.

17. Gramajo, M. G., Ballejos, L. C., Ale, M., “Hacia la Evaluación Automática de la Calidad

de los Requerimientos de Software usando Redes Neuronales Long Short Term Memory”,

Workshop on Requirements Engineering WER, 2020.

18. Harris, Z. S.: Co-occurrence and transformation in linguistic structure. (Linguistic Society

of America) pp. 390- 457, 1957.

19. Ibrahim, M. Ahmad, R.: "Class Diagram Extraction from Textual Requirements Using

Natural Language Processing (NLP) Techniques," 2010 Second International Conference

on Computer Research and Development, Kuala Lumpur, Malaysia, pp. 200-204, 2010.

20. Insfrán, E. Tejadillos, E. Martí, S. Burbano, M. :”Transformación de Especificación de

Requisitos en Esquemas Conceptuales usando Diagramas de Interacción”. Workshop on

Requirements Engineering (WER) pp: 91-105, 2002

21. Kashmira, P. G. T. H., Sumathipala, S., "Generating Entity Relationship Diagram from

Requirement Specification based on NLP," 2018 3rd International Conference on

Information Technology Research (ICITR), Moratuwa, Sri Lanka, pp. 1-4, 2018.

22. Letsholo, K. J., Zhao, L., Chioasca, E. V.: "TRAM: A tool for transforming textual

requirements into analysis models," 2013 28th IEEE/ACM International Conference on

Automated Software Engineering (ASE), Silicon Valley, CA, USA, pp. 738-741, 2013.

23. Lim, S. L., Finkelstein, A.: “StakeRare: Using Social Networks and Collaborative Filtering

for Large-Scale Requirements Elicitation”, IEEE transactions on software engineering,

Volume 38, Issue 3, May-Jun 2012, DOI 10.1109/TSE.2011.36, pp 707-735, 2012

24. Lucassen, G., Robeer, M., Dalpiaz: Extracting conceptual models from user stories with

Visual Narrator. Requirements Eng 22, pp 339–358, 2017.

25. Nascimento, R., Guimaraes, E., Lucena, M. “Requirements Smells como Indicador de

Qualidade para Histórias de Usuários: Estudo Exploratório”, Workshop on Requirements

Engineering WER, 2021.

26. NLTK, https://www.nltk.org/, accessed: 2023-03-05

27. PlantUML, available at: https://plantuml.com/, accessed on 27th February 2023.

28. Potts, C.: "Using schematic scenarios to understand user needs," in Proceedings of the 1st

conference on Designing interactive systems: processes, practices, methods, & techniques,

1995

29. Python, https://www.python.org/, accessed: 2023-03-05

30. Robeer, M., Lucassen, G., van der Werf, J. M. E. M., Dalpiaz, F., Brinkkemper, S.:

"Automated Extraction of Conceptual Models from User Stories via NLP," 2016 IEEE

24th International Requirements Engineering Conference (RE), Beijing, China, pp. 196-

205, 2016.

31. Shuttleworth, D. Padilla, J.: "From Narratives to Conceptual Models via Natural Language

Processing," 2022 Winter Simulation Conference (WSC), Singapore, pp. 2222-2233, 2022.

32. Sklearn, https://scikit-learn.org/, accessed 2023-03-05

33. Spacy https://spacy.io/, accessed 2023-03-05

34. TensorFlow, https://www.tensorflow.org/, accessed: 2023-03-05

35. Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K. J., Ajagbe, M. A., Chioasca, E., Batista-

Navarro, R. T.: Natural Language Processing for Requirements Engineering: A Systematic

Mapping Study. ACM Comput. Surv. 54, 3, Article 55 (April 2022), 41 pages, 2021.

169

https://flask.palletsprojects.com/
https://dblp.uni-trier.de/pid/i/EmilioInsfran.html
https://dblp.uni-trier.de/pid/293/9487.html
https://dblp.uni-trier.de/pid/00/4028.html
https://dblp.uni-trier.de/pid/294/0038.html
https://dblp.uni-trier.de/db/conf/wer/wer2002.html#InsfranTMB02
http://dx.doi.org/10.1109/TSE.2011.36
https://www.nltk.org/
https://plantuml.com/
https://www.python.org/
https://spacy.io/
https://www.tensorflow.org/

