
Market-aware Requirements?

Romina Torres and Hernan Astudillo

Universidad Técnica Federico Santa Maŕıa,
Departamento de Informática, Valparáıso, Chile,

{romina,hernan}@inf.utfsm.cl,
http://www.inf.utfsm.cl

Abstract. Traditionally, non-functional requirements (NFRs) are spec-
ified as measurable entities to permit evaluation satisfaction; however,
NFR specifications quickly become obsolete because (1) NFRs are ex-
pressed in numbers, (2) architects specify them using the correct values
at design time, and/or (3) providers are constantly improving their offer,
in terms of functionality and quality of service (QoS). The computing-
with-words approach has already been proposed to replace numerical
NFR specifications, where natural language words denote fuzzy qual-
ity levels; unfortunately, current proposals provide only for design-time,
stakeholder-defined translation of words as numerical ranges. We propose
a mechanism to automatically and dynamically determine current nu-
merical ranges of the fuzzy quality levels from the available data, without
human intervention, whenever changes to component QoS specifications.
Our main contribution is allowing architects to specify their require-
ments using words only once (at design time), and whenever providers
change components QoS characteristics, automatically update those re-
quirements to the new market view, enabling market-aware requirements.
The approach was validated by measuring the number of times that nec-
essarily a requirement had to be rewritten at runtime in order to get new
operationalizations which replace the now older ones. We use a set of ten
complex requirements, a dataset of 1500 actual Web services with precise
measurements for nine QoS aspects, and a simulated offering variability.
A Web-based prototype is also made available.

Keywords: Non-Functional Requirements, computing with words, fuzzy
sets, fuzzy c-means

1 Introduction

The capability of systems for runtime adaptation to unforeseen environment
conditions or changing requirements is becoming an expected feature for the
next modern systems. Even more, it is expected that this capability be pro-
vided by the system itself (self-adaptive systems). Currently, there are several
proposed solutions addressing partially this challenge. Recent work has focused

? This work was partially funded by FONDEF (grant D08i1155), UTFSM DGIP (grant
DGIP 241167 and PIIC) and BASAL FB0821.

in addressing the self-adaptability from the requirements phase, where most of
them represent requirements with a goal-based model ([YLLML08], [MPP08],
[GSBHC08] [LL04]) which allows to represent functional and non-functional re-
quirements (as goals and softgoals, respectively), domain and goal dependencies,
among others.

This work proposes market-aware non functional requirements, where cus-
tomers specify at design-time the required softgoals for the system under de-
velopment using words (quality levels), and each time the market changes at
runtime new operationalizations are recommended (probably because current
operationalizations do not satisfy softgoals anymore). Our main contribution is
to simplify the requirement maintenance model at runtime avoiding to customers
(stakeholders) to map each time from quality expressed in words to quantified
quality according to the new market view.

The rest of the article is organized as follows: Section 2 motivates the problem;
Section 3 describes related proposals; Section 4 introduces basic background
required to understand the proposed approach; Section 5 presents the approach;
Section 6 describes a case study and its discussion; and Section 7 concludes the
paper and draws future works.

2 Motivation

Given the ever increasing proliferation of available Web services in open Web cat-
alogs in the Internet, we can safely assume that for each functionality type there
is a set of Web services that could be potentially interchangeable [WSBCB10];
furthermore, there may be competition among their providers to make them
distinguishable by their quality of service since they are functionally equiva-
lent. Traditionally service providers provide precise measurement numbers for
each quality aspect, but for stakeholders is easier to specify quality constraints
with natural language words that denote the expected service level (e.g. “highly
reliable component”, “fast response time”). Thus, QoS requirements must be
typically expressed as numbers to make them measurable and verifiable; these
numbers are typically obtained (perhaps after iterating) with relevant stakehold-
ers. Fuzzy Requirements [Li98] have been used in the past as a tool to capture
client needs in terms of words and to map them into design specifications, also
representing conflicts among them with a fuzzy multi-criteria decision making
technique.

This approach works well at design time: stakeholders can use a snapshot of
component QoS specifications to approximate the numbers that better represent
their preferences. But this approach breaks at runtime, when components’ QoS
specifications are rapidly changing: (1) it is difficult for humans to constantly
react to changes in market offerings, and (2) it is unfeasible to bring together
stakeholders every time requirements needs to be restated. For instance, if stake-
holders indicate that a component needs to send email with an “extremely ac-
ceptable” latency, an examination of prevailing market data may allow to decide
(after some iterations) that “extremely acceptable” means “at most 200 millisec-

onds and ideally less than 100 milliseconds” (see left side of Figure 1); i.e. within
this range stakeholder satisfaction increases as latency gets closer to 100 millisec-
onds (see right side of Figure 1). Softgoals depend of subjective perceptions of
customers. Thus, this softgoal specification will probably become obsolete when
the market changes.

Fig. 1. utility tree

At runtime, when components providers are continuously competing several
of them could change and probably improve their QoS specifications. Then, even
when the numerical specification still is satisfied, the market has changed in such
way that for those that before exhibited a “extremely acceptable” latency, they
are not anymore, because other components’ QoS improved in such a way that
the stakeholders’ perception change. Then, they could, by example, determine
that now the “extremely acceptable” class ranges between 50 and 120 ms. Then,
the current operationalization could become also obsolete (for instance if the
current operationalization exhibits a 102 ms of latency).

3 Related Work

Several authors [YLLML08], [MPP08], [GSBHC08], [LL04] have used a goal-
based approach as base to model requirements for self-adaptive systems because
is very suitable specially because allows designers to model the tradeoff between
NFRs, but all of them are prepared for foreseen adaptations where each violation
as well as the alternatives to apply are enumerated at design time. Even more,
not all of them addressed soft goals (NFRs) [WMYM09]. Our approach also use a
reduced goal-based model, where not functional requirements are represented as
fuzzy softgoals which are automatically adjusted each time the QoS component
specifications change avoiding at runtime to rewrite them in order to align them
with the stakeholders’ expectations changes (because the context improvements).

Whittle et al. [WSBCB10] proposed RELAX, a language to address the un-
certainty in the specification of requirements of self-adaptive systems, which
allows developers to identify by specific special constructs (modal, temporal or
ordinal operators) which requirements could be relaxed at runtime when the
environment changes. Different from our work, they address the environmental

uncertainty as the doubt of to know at runtime if all the components which sat-
isfy the requirements will be available, and let the system to adapt itself to an
scenario where not all the needed parts are available but at least the critical ones
are. Even more, RELAX could be seen as a mean to establish the boundaries of
adaptive behavior, then it could be a complementary approach to be considered.
The ultimate goal of authors is challenging, they intent to enable systems “re-
quirements reflection” [BWSFL10] which means, systems are capable to reason
about theirs own requirements and goals at run-time.

Cheng et al. [CSBW09] show how can be used to reason about uncertainty
identifying its impact on the goal hierarchy. For instance KAOS is a goal-oriented
software requirements capturing approach in requirements engineering. Origi-
nally, it did not consider adaptation, then Baresi et al. [BP10] extend it by
include adaptive goals, which allows it to support the specification of “when”
and “what” should be the adaptation. Besides, authors proposed a runtime in-
frastructure [BGP08] which constantly monitors the conditions to trigger adap-
tations if it is necessary. Baresi et al. [BPS10] formalized this model as FLAGS
(Fuzzy Live Adaptive Goals for Self-adaptive systems) which represents require-
ments as runtime entities, distinguishing between crisp and fuzzy goals whose
satisfaction is represented through fuzzy constraints. Unfortunately, they use
the preferences numbers of the stakeholders to define the membership function
boundaries, then, if the component QoS measurements change then these mem-
bership functions become obsolete because they were calculated using an older
snapshot of the market where the numbers specified by the stakeholders made
sense, but it could be that in current’s market no longer has. Then, in order to
align fuzzy goals with the changing expectations of stakeholders should be asked
often what lead to a costly process.

Horkoff et al. [HY08] developed a backwards, qualitative, interactive analysis
procedure for the i* Framework by express the goal model analysis as a SAT
problem [SGM04] allowing represent them as a satisfaction problem which can
be evaluated and actually is ran in an iterative fashion process, but allowing the
interaction of the stakeholders at each stage in order to adjust the model. The
our only critique to this work is that the softgoals adjustments rely on the stake-
holders interaction, then if this interaction is slower than the QoS component
specifications changes or for humans not possible to be assimilated, then the
adjustments are not enough and then the model becomes obsolete against the
component market. Then, we think our approach could improve this proposal
by reducing the expensive and constantly participation of stakeholders based
on the assumption that the market (QoS component specifications and compo-
nents themselves) is rapidly changing. Same case with the work of Giorgini et
al. [GMN02], we pointed that their approach can be improved by let customers
use words instead of precise numbers, where these words are, in a backup pro-
cess, mapped into precise numbers. Then, examples as “highly reliable systems”
presented by these authors, when they are decomposed into observable goals do
not need to be traduced into 99.9% of reliability, because “highly reliable” is a
goal which is dependently of the current conditions of the market, and opera-

tionalizations should self-organize around the several quality levels of the aspect
“reliability” and the ranges of each level should be calculated automatically from
the available offer (over the time) instead of use stakeholders inputs (which im-
plies a manual or a separated tool-support process in order to understand the
offer in order to reach agreements which should be the precise numbers to use).

Silva et. al [SLRM11] proposed “Awareness Requirement” (AwReqs), a new
type of requirement that can refer to other requirements or domain assumptions
and their success or failure at runtime, and how they can be elicited and for-
malized, offering besides a requirements monitoring framework to support them.
For instance, for the AwReq: “the ambulance response time of less than 8 min
should be 95%”. Compared to our work is similar to use quantifiable softgoals (“
response time of less than 8 min” mapped to our language is “response time of at
most 8 min”) and using a threshold of 0.95 for the utility satisfaction function.
But again, they are using precise numbers to specify these quality constraints,
meaning these AwReqs specifications will become also obsolete. Same consid-
erations for the work of Letier et al. [LL04], which proposed an approach that
allow to specify partial degrees of goal satisfaction by quantifying the impact of
alternative designs on goal-based systems using a probabilistic approach based
on numbers at design time.

Serrano et al. [SSL11] implemented a propagation simulator which supports
Requirements Engineering (RE) community for dealing with NFRs and a reason-
ing engine which is capable to deal with unpredictable situations that changes
overtime. Regarding the requirements part, as in previous work with service qual-
ity perceptions (for instance [MGD03]), they basically modeled the goal-based
runtime model as a fuzzy multi-criteria decision making problem, where again,
the fuzzy levels boundaries of each fuzzy variable (which represents a softgoal)
is not clear if they are arbitrarily assigned by the programmer or are elicited
from stakeholders. Both cases, are not good enough to support the variability
representation capability need it to be able to represent the constant changes in
the QoS’ components specifications at runtime.

Pimentel et al. [PCF11], on the other hand, proposed the FAST (failure
handling for Autonomic Systems) framework which facilitates the definition of
tolerance policies and their monitoring in order to evaluate them at runtime
and trigger an adaptation if a failure was caught. There are only two available
adaptation strategies: to replace the failed components (components which are
violating any tolerance policy rule of the system) or ignore them. We present
this work in this section because they also use words or levels to make decisions
instead of crispy numbers, allowing requirements to adapt themselves to the new
conditions of the market. But again, it seems instead of use from the context
data the ranges values of the different levels, they use stakeholders defined values
(which as we established in our work they becomes rapidly obsolete). Another
difference with our work is that they use a binary classification instead of grad-
uated one (for instance, our approach allows us to tell that a service with a
“availability” of 90% is “extremely acceptable” with a membership of 0.7 but it

is “very acceptable” with a membership of 1, instead of to just say it is classified
on this one or on the other).

4 Background techniques

In classical set theory, an object either is or is not member of a set, but member-
ship in a fuzzy set is a graded, where e.g. an object x may belong to a fuzzy set
A in a certain degree between 0 and 1 (values closer to 1 indicate higher degrees
of membership). Fuzzy sets were proposed by Zadeh [Za68]. Formally, a fuzzy
set A is defined by a set of ordered pairs, A = {(x, µA(x)), x ∈ U, µA(x) ∈ [0, 1]},
where µA(x) is a function (piecewise continuous or discrete) called membership
function, that specifies the grade or degree to which any element x in U belong-
ing to the fuzzy set A. A fuzzy value is a fuzzy set which membership function
is continuous and defined over the real numbers. There are several forms to rep-
resent fuzzy values; the triangular and trapezoidal shapes are most popular (see
[TAS11]). Depending of the type of the fuzzy number, we can need different
parameters in order to define it: a triangular fuzzy value can be defined by a
triplet (a, b, c), but a trapezoidal fuzzy value can be defined by four parameters
(a, b, c, d). Typically these parameter values are decided upon by a group of
experts or by consensus of the users.

On the other hand, linguistic variables can also be defined by fuzzy sets. A
linguistic variable refers to the possible states are fuzzy sets assigned to relevant
linguistic terms (e.g., “important”, “acceptable”, “not fast”, etc.). Because at
runtime, when QoS’ components specifications are rapidly changing (1) for hu-
mans is difficult to frequently manage different snapshots of the market, and (2)
also it would be expensive to bring together stakeholders each time requirements
needs to be aligned with these changes, we proposed to replace stakeholders at
runtime by an automatic method to identify the classes in the distribution of the
data. This should be more robust than the classical manner because the Web
service market is currently expanding and changing and users and even experts
may not know much about the subject that they are clustering, or may not be
familiar with the clustering system or the reality that they knew have completly
changed.

The objective of fuzzy clustering methods is to divide a given dataset into a
set of clusters based on similarity. In classical cluster analysis each datum must
be assigned to exactly one cluster. Fuzzy cluster analysis relaxes this requirement
by allowing membership degrees, thus offering the opportunity to deal with data
that belong to more than one cluster at the same time. Each cluster is represented
by a center and additional information about the shape of the cluster. Each data
point can belongs to several clusters with different degrees of membership which
are computed from the distances of the data point to the cluster centers.

The Fuzzy C-Means (FCM) clustering algorithm (see [PPKB05] for details)
is applied to each quality attribute. After applying the FCM algorithm, the set
of cluster prototypes, V = {v1, . . . , vc} and the partition matrix U are available.
The value uij ∈ U of the fuzzy partition matrix determine the membership

degree at which the attribute of th j-th Web service sj fulfill the i-th linguistic
term. The membership degrees of the dataset to the corresponding clusters are
obtained by minimizing iteratively the objective function:

Jm(U, V ;WS) =

m∑
j=1

c∑
i=1

umijd
2(sj , vi) (1)

The minimization process with respect to uij and vi is done separately and
necessary conditions for a minimum yields update equations for both:

uij =
1∑c

k=1

(
d2(sj ,vi)
d2(sj ,vk)

) 1
m−1

vi =

∑n
j=1 u

m
ij sj∑n

j=1 u
m
ij

. (2)

Due to imposed probabilistic constraints to minimize the objective function, the
membership matrices are non-convex discrete fuzzy sets. In [TAS11] we used a
variant of the fuzzy c-means algorithm [LCH03] that prevents the generation of
non-convex fuzzy terms and ensures that the all the classes are correctly mapped
to their domains.

5 Market-aware requirements

In this section we explain how market-aware requirements can be achieved by
specifying non-functional requirements using words (quality levels) and applying
fuzzy c-means to the sensed data from the market in order to allow services to
self-organize around these levels in order to, at runtime, using the same specifi-
cations (at design time) obtain updated operationalizations recommendations.

5.1 Specifying market-aware requirements

To enable architects in finding an appropriate set of Web service candidates
that satisfy their requirements, we propose a manual subprocess that must be
performed in order to map requirements into market-aware-requirements.

First, architects specify functional requirements (FRs) that need to be sat-
isfied, selecting from the functional categories list or using keywords. Then, for
each FR, they specify a set of NFRs that the solution must address. Using this
initial subset of NFRs, they are refined until obtaining a prioritized set of re-
quired QoS aspects. For each aspect that needs to be addressed, they specify the
minimal acceptable class that the aspect must satisfy (e.g. response time should
be at least “very acceptable”), as well as its relative importance vis-a-vis other
aspects. This subprocess could be performed with the help of the stakeholders.

In Figure 1, an architect is trying to find a service capable to send email.
He is concerned with the performance of the Web service; using the utility tree,
refines the performance into latency QoS aspect and others (not considered in
this example for the sake of simplicity). This is a step toward refining NFRs

to be concrete enough for prioritization (similar to softgoals). Then, typically,
he specifies a concrete value range in order to make the aspect quantifiable and
verifiable. But, as we mentioned before in Section 2, setting precise (crispy)
values is an expensive task because architects and stakeholders need to be aware
of the current market offerings. In the example in Figure 1, instead of defining
crispy (market-dependent) numbers, they specify the minimal acceptable class,
in this case denoted with the “extremely acceptable” word.

Regarding the prioritization of the aspects, we reuse the ideas of goal-based
models using relative rankings: High(H), Medium(M) and Low (L).

5.2 Mapping market-aware specifications into a model@runtime

Each market-aware requirement is mapped into a runtime entity that must be
monitored to determine whether the current operationalization still satisfies it;
if it does not, this triggers a recommendation to change runtime representation
according to the updated market view (i.e. a new operationalization) without
manual intervention and without update quality constraints. Since requirements
have been specified using words, for each requirement or requirement set, we
can calculate its fuzzy multi-criteria utility function, which is defuzzified into
two classes: “acceptable solution” and “not acceptable solution”.

Inspired on previous work [Sc01] where a Multi-Attribute Utility Theory
(MAUT) is used for estimating user’s interests, we derive an utility function for
each request, which is an aggregation function. In our case this is a weighted
addition of the functional requirements’ satisfaction, and for each functional re-
quirement another weighted function of the evaluation of each relevant value
dimension (in this case non-functional constraints) is added. Formally, for each
functional requirement FR = {FR1, ..., FRN}, let Q = {q1, ..., 1J} be a set of J
sub-non-functional requirements. MAC = {MAC1, ...,MACJ} is the minimal
acceptable label class for each element of the set NFR, explicitly expressed by
the customer or derived from the desired and reserved values (D = {D1, ..., DJ}
and R = {R1, ..., RJ}). Let C = {C1, ..., CM} be the set of M functional-
equivalent components that satisfy the specific FRn; and CCm = {cm1, ..., cmJ},
the current values that the component m provides for each non-functional at-
tribute. Let W = {w1, ..., wJ} be the set of importance’s weights assigned by the
customer to each non-functional requirement. The weight is calculated assigning
to each label ({H,M,L}) a predefined value ({1,3,5} respectively) normalized by
the sum of all the values assigned to the different aspects chosen by the eval-
uator. These relative importance labels were specified by the evaluators in the
previous stage. The utility function for each request is shown at equation 3.

U =

n′∑
i=1

vi ·
m∑
j=1

wj · qjk (3)

where n′ is the number of functional sub-requirements which comprised the
request and qjk is the degree of membership of the quality aspect j of the service k

to the required minimal quality class for this particular aspect j for the particular
sub-requirement i. Quality classes are represented as fuzzy sets. Further details
can be found in [TAS11].

6 Validation

6.1 Case Study

The case study dataset consists of a collection of 1500 Web services (operative
at least until October 2011), based on the QWS Dataset [AM10] 1 which origi-
nally included 2507 actual Web service descriptors with nine QoS measurements.
The quality aspects with their metric ids are response time(1), availability(2),
throuhgput(3), successability(4), reliability(5), compliance(6), best practices(7),
latency(8) and documentation(9).

To emulate the market changes, we have created two new market variations
from the original dataset, where QoS’ component specifications are improved in
the first snapshot a random percentage between 0% and 30%, and in the second
snapshot a random percentage between 30% and 50%. All of these modifications
are applied to all services excepting a black list of service identifiers that are
not modified because they were suggested in the original or in the second mar-
ket snapshot; we did this to show that using the original word-expressed QoS
specifications at design time (specified as market-aware requirements) is good
enough to obtain updated suggestions that better reflect updated market condi-
tions. Table 1 shows the ten complex requests that we use to assess our approach
where basically, each sub functional requirement of the request is formed by the
relative importance to others, the functional category which is assigned in our
system, and then a list of the non-functional requirements which must be ad-
dressed, and for each one a triplet which represents the quality aspect id, the
minimal acceptable class and the relative importance.

In Table 2 we show how the requirements specifications become obsolete as
the market evolves (100% of the requests) meaning if the quality levels are not
updated as we proposed those requirements becomes obsolete as well their sug-
gested operationalizations. If we use market-aware requirements even when the
market evolves, using the same requirements specifications, clients do not need to
specify again them and obtain new operationalizations if the satisfaction degra-
dation is too high. For the 100% of the requests, using the same requirements
specified at design time, we obtained at runtime new operationalizations which
outperforms the obsolete ones. Then, using our approach the number of times
that we rewrite the requirements was 0.

6.2 Prototype implementation and dataset

A prototype system was developed to asses our approach 2, which allows archi-
tects of service-based systems (1) specifying a set of functional goals; (2) ranking

1 http://www.uoguelph.ca/q̃mahmoud/qws
2 http://cc.toeska.cl/cww

Table 1. Test Cases Design

id FR(weight) {(category id){metric id, mac, weight}+}+
R1 latitude longitude map (H) {(12954){1,EA,H}{2,EA,H}{3,EA,H}}

country zip(H) {(13338){3,EA,H}{5,EA,H}{7,EA,H}{8,EA,H}}
R2 file size image(H) {(12915) {1,EA,H}{2,EA,H}{3,EA,H}}
R3 sequence protein(H) {(13100){1,EA,H}{3,EA,H}{8,EA,H}}
R4 sale, product)(H) {(12958){7,EA,H}{6,EA,H}{8,EA,H}}
R5 job progress (H) {(13131){1,EA,H}{1,EA,H}{7,EA,H}}

email(H) {(13206){1,EA,H}}
R6 phone info(H) {(12943){1,EA,H}{3,EA,H}{7,EA,H}}

fax text (H) {(13129){1,EA,H}{2,EA,H}}
R7 lookup email(H) {(12979) {1,EA,H}{5,EA,H}}

weight package delivery (H) {(12940){1,EA,H}{2,EA,H}{3,EA,H}}
R8 currency country(H) {(12994){1,EA,H}{2,EA,H}{7,EA,H}}

zip country(H) {(13005){1,EA,H}{5,EA,H}}
R9 subscription(H) {(12973){1,EA,H}}

delivery(H) {(12946){1,EA,H}}
zip map(H) {(13005){1,EA,H}}

R10 notification subscription(H) {(13387){1,EA,H}}
email(H) {(13206) {1,EA,H}}

Fig. 2. The prototype Tool interface

Table 2. Test cases Execution - For each test case, first column shows id of request,
second the operationalization suggested at design time with the specification given by
stakeholders by observing the snapshot at design time, third and fourth columns shows
how the operationalization becomes obsolete as the market evolves.

id operationalization design-time (1st)runtime (2nd)runtime

R1 84193574,4869688 (0.875) (0.545) (0.27)
R2 26914897 (1) (0.404) (0)
R3 15103218 (1) (0.667) (0.501)
R4 66537772 (1) (0.33) (0.33)
R5 43546302,15103218 (1) (0.833) (0.833)
R6 78667380,23013627 (1) (0.833) (0.333)
R7 191615174,115114747 (1) (0.580) (0.449)
R8 112791393,179771826 (1) (0.438) (0.137)
R9 191615174,162199213,145056169 (1) (0.976) (0.76)
R10 179326172,167233563 (1) (0.5) (0.5)

functional goals; (3) specifying for each functional goal its non-functional require-
ments (softgoals) using words; (4) ranking the softgoals of each functional goal;
and finally (5) finding a set of operationalization services that satisfies the re-
quest. Also, suggestions change as the service market evolves, recommending new
operationalization sets (if appropriate) based on updated market conditions.The
prototype system contains four main components to enable component compo-
sition. Taxonomy builder which uses the components’ descriptor files to create a
complete hierarchical taxonomy using Formal Concept Analysis (FCA) and Ga-
lois Lattices (see [TAS11] for more details). Non-Functional Clusterizator builder,
which using fuzzy c-means clustering, for each market snapshot, functional cat-
egory and quality aspect, five fuzzy clusters of service are iteratively built (this
component is built in Python over Peach 3). The API which is a public Appli-
cation Programmer Interface which exposes all the functionality implemented as
Web services. The Presentation Layer which was built using Ruby on Rails, it
consumes the services exposed by the API.

6.3 Calculating the current market view

The infrastructure to provide time after time the current market view is com-
posed of several components. The functional crawler component which collects
from different Web-based catalogs the Web service descriptors. The QoS certifier
component, based on the endpoint list sent by the previous component, runs a
benchmark tool over the Web services in order to gather the QoS measurements.
Thefunctional clustering component, based on the Web service descriptors, it
clusters the Web services according to their functionality (this can be replaced
by the categories provided by the catalog). And the QoS-fuzzy clustering which
for each functional cluster and for each quality aspect it cluster into c classes

3 http://code.google.com/p/peach/

(quality levels). The ranges of each class depend of the services which belong to
the classes.

To this end, we define five cluster of QoS or classes: “poorly acceptable”
(PA), “almost acceptable” (AA), “acceptable” (A), “very acceptable” (VA), and
“extremely acceptable” (EA). These classes are fuzzy numbers even when the
measurements are crispy. Each fuzzy number has a membership function that
is limited and continuous and in this case we have choose a triangular shape,
represented by a triangular fuzzy number A with membership function µA(x)
which is defined on R.

µA(x) =

x−a1

aM−a1 if a1 ≤ x ≤ aM
x−a2

aM−a2
if aM ≤ x ≤ a2

0 otherwise,

(4)

where [a1, a2] is the supporting interval and the point (aM , 1) is the peak. We
have two types of quality aspects, those that we want to minimize and those that
we want to maximize. Therefore, for different aspects we will have individuals
that have a great belonging grade to the “EA” with a lower value for the metric
measurement against those that will be completely opposite, where the individ-
ual with greater values are classified into that class. For instance, this happens
when we are comparing response time against the reliability quality aspect.

As we mentioned before, for each Web service functional cluster and for each
QoS aspect we apply the modified fuzzy c-means clustering to organize the Web
service around of the five QoS classes mentioned before, obtaining the center of
each class as well their supporting interval based on the crispy measurements
obtained by the QoS crawler. The advantage to use Fuzzy logic is that each
QoS measurement is classified in at least one class with a belonging degree. For
instance, a specific weather Web service could be classified into the “EA” class
with a belonging degree of 1 as well it could be classified into the “VA” class
with a belonging degree of 0.8.

7 Conclusions and further work

This article has described an approach to support architects to specify NFRs
with words at design time which are automatically expressed in numerical terms
whenever providers change components QoS characteristics, thus enabling market-
aware requirements. Current fuzzy-based techniques are expert and/or consensus-
based, and therefore too fragile, expensive, non-scalable, and non- self-adaptive.
We address market dynamism by using each time a modified fuzzy c-means mod-
ule, which allows service providers to automatically be organized around QoS
levels. This approach is not only useful for adaptive systems, but also for any kind
of service-based system where there is strong competition (several continuously-
improving providers for the same requirements). Our approach allows at run-
time not-obsolete improvements using the specifications made at design time.
An extra advantage of our approach is that architects can specify their QoS con-
straints with words, without really knowing what are the current best quality

ranges. Most approaches revisited at related work shared a closed-world assump-
tion, where stakeholders can decide the better numbers for each variable because
they know the current QoS components specifications. However, in practice ar-
chitects cannot retain all market information and also be aware of its continuous
changes, and even if they could (say, with proper tools), it would still be un-
feasible to gather stakeholders to determine the proper number every time a
softgoals’ hidden number ranges must be adjusted. On the other hand, none of
the related work address the same problem as we are, specifically the problem
faced by architects who are designing, composing, deploying and maintaining
service-based systems against a constantly changing (mainly improving) QoS
component specification offerings, which make obsolete at runtime requirements
specified at design time. Then current works demand that architects, besides
maintaining system, also maintain the system goals to keep them aligned with
the implicit stakeholder expectations (and also changing due to market changes).

As future work we are considering to apply market-aware requirements to self-
adaptive systems as a model robust enough to drive the adaptation, allowing by
properly tuning the parameters, obtain new recommendations when the current
ones become obsolete.

References

[AM10] Al-Masri E., Mahmoud Q. WSB: a broker-centric framework for quality-driven
Web service discovery, in Software: Practice and Experience, vol. 40. John
Wiley and Sons, Ltd., (2010) 917–941.

[BGF09] Bencomo N., Blair G., France R. Guest editor’s introduction: Mod-
els@run.time. IEEE Computer, (2009).

[BGP08] Baresi L., Guinea S., Pasquale L. Integrated and Composable Super- vision
of BPEL Processes. In: Proc. of the 6th Int. Conf. of Serv. Oriented Computing
(2008). 614–619.

[BP10] Baresi L., Pasquale L. Adaptive Goals for Self-Adaptive Service Compositions.
In Proceedings of the 2010 IEEE International Conference on Web Services
(ICWS ’10). IEEE Computer Society, Washington, DC, USA. (2010) 353–360.

[BPS10] Baresi L., Pasquale L., Spoletini P. Fuzzy Goals for Requirements-Driven
Adaptation. In Proceedings of the 2010 18th IEEE International Requirements
Engineering Conference (RE ’10). IEEE Computer Society, Washington, DC,
USA. (2010) 125–134.

[BWSFL10] Bencomo N., Whittle J., Sawyer P., Finkelstein A., Letier E. Requirements
reflection: requirements as runtime entities. ICSE (2010). 199–202.

[CSBW09] Cheng B., Sawyer P., Bencomo N., Whittle J. A goal-based modeling ap-
proach to develop requirements of an adaptive system with environmental un-
certainty. In: MoDELS’09: Proceedings of the 11th international conference on
model driven engineering languages and systems. Springer, Berlin. (2009)

[GMN02] Giorgini P., Mylopoulos J., Nicchiarelli E., Sebastiani R. Formal Reasoning
Techniques for Goal Models. Journal Data Semantics 1. (2003). 1–20

[GSBHC08] Goldsby H, Sawyer P, Bencomo N, Hughes D, Cheng B. Goal-based mod-
eling of dynamically adaptive system requirements. In: 15th annual IEEE in-
ternational conference on the engineering of computer based systems (ECBS)
(2008)

[HY08] Horkoff J., Yu E. Qualitative, Interactive, Backwards Analysis of i * Models.
iStar 2008 (2008) 43–46

[KM07] Kramer J., Magee J. Self-Managed Systems: an Architectural Challenge. In
2007 Future of Software Engineering (FOSE ’07). IEEE Computer Society,
Washington, DC, USA. (2007). 259–268

[LCH03] Liao T., Celmins A., Hammell R. 2003. A fuzzy c-means variant for the
generation of fuzzy term sets. Journal Fuzzy Sets and Systems. 135, 2 (2003),
241–257.

[Li98] Liu X. Fuzzy Requirements. IEEE Potentials. (1998). 24–26
[LL04] Letier E., van Lamsweerde, A. Reasoning about partial goal satisfaction for

requirements and design engineering. In SIGSOFT’04/FSE-12: 12th ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
(2004) 53–62.

[MGD03] Chen M., Tzeng G., Ding C. Fuzzy MCDM approach to select service
provider. The 12th IEEE International Conference on Fuzzy Systems, 2003.
FUZZ ’03. 1(2003) 572–577

[MPP08] Morandini M, Penserini L, Perini A Modelling self-adaptivity: a goal-oriented
approach. In: Proceedings of second IEEE international conference on self-
adaptive and self-organizing systems (SASO), (2008) 469–470

[PCF11] Pimentel J., Castro J., Franch X. Specification of Failure-Handling Require-
ments as Policy Rules on Self-Adaptive Systems. WER 2011

[PPKB05] Pal N., Pal K., Keller J., Bezdek J. A Possibilistic Fuzzy c-Means Clustering
Algorithm. IEEE Transactions on Fuzzy Systems, vol. 13, number 4. (2005)
517–530

[Sc01] Schaefer, R. Rules for Using Multi-Attribute Utility Theory for Estimating a
User’s Interests. In Proc. ABIS Worksh. Adaptivity und Benutzermodellierung
in interaktiven Softwaresystemen, Dortmund, Germany, October (2001).

[SGM04] Sebastiani R., Giorgini P., Mylopoulos J.: Simple and Minimum Cost Satisfia-
bility for Goal Models. CAiSE’04. Advanced Information Systems Engineering.
LNCS. (2004). 675–693

[SLRM11] Silva V., Lapouchnian A., Robinson W., Mylopoulos, J. Awareness require-
ments for adaptive systems. In Proceedings of the 6th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS
’11). ACM, New York, NY, USA, (2011). 60–69.

[SSL11] Serrano M., Serrano M., do Prado S., Leite J. Dealing with softgoals at run-
time: A fuzzy logic approach, Requirements@Run.Time (RE@RunTime), 2nd
International Workshop. (2011)

[TAS11] Torres R., Astudillo H., Salas R. 2011. Self-Adaptive Fuzzy QoS-Driven Web
Service Discovery. In Proceedings of the 2011 IEEE International Conference
on Services Computing (SCC ’11). IEEE Computer Society, Washington, DC,
USA. (2011) 64–71.

[WMYM09] Wang Y., Mcilraith S., Yu Y., Mylopoulos J. Monitoring and Diagnosing
Software Requirements. Automated Software Engineering, 16(1). (2009) 3–35.

[WSBCB10] Whittle J., Sawyer P., Bencomo N., Cheng B., Bruel, J. RELAX: a lan-
guage to address uncertainty in self-adaptive systems requirement. Require-
ments Engineering, Springer London, ISSN 0947-3602. (2010)

[YLLML08] Yijun Y, Lapouchnian A, Liaskos S, Mylopoulos J, Leite J. From goals to
high-variability software design, vol 4994. Springer, Berlin (2008)

[Za68] Zadeh L. Fuzzy Algorithms. Information and Control, vol.12, number 2. (1968)
94–102

