
Deriving requirements specifications

from the application domain language captured by

Language Extended Lexicon

Leandro Antonelli1, Gustavo Rossi1,

 Julio Cesar Sampaio do Prado Leite2, Alejandro Oliveros3

1 Lifia, Fac. de Informática, UNLP, calle 50 esq 120, La Plata, Bs As, Argentina

{lanto, gustavo}@lifia.info.unlp.edu.ar
2 Dep. Informática, PUC-Rio, Rua Marquês de Sâo Vicente 255, Gávea, RJ, Brasil

www.inf.puc-rio.br/~julio
3 INTEC – UADE, Bs As, Argentina

oliveros@gmail.com

Abstract. Understanding the context of a software system during requirements

specification is a difficult task. Sometimes application domains are very

complex, other times the limits of the application are fuzzy. Thus, it is difficult

to elicit and write the initial set of requirements. This difficulty frustrates

requirements engineers and restricts the process of analysis, which could lead

to a final software requirement specification of low quality. In such situations

technologically outstanding software systems can be built, but they may fail to

suit the needs of the client. Hence, clients are unsatisfied and development

projects fail. In this paper we propose a strategy to use the application domain

language captured by the Language Extended Lexicon in order to obtain

different products related to requirements specification. Products vary from

classic requirements which state “the system shall…” to products such as Use

Cases and User Stories. The strategy focuses on obtaining the initial set of

functional requirements. We believe that by minimizing the gap between the

problem and the initial set of requirements, we provide engineers with a

preliminary product they can work on and refine to reach the quality needed.

Keywords: Requirements specifications, Domain Analysis, Language

Extended Lexicon, Requirements statements, User Stories, Use Cases.

1 Introduction

Understanding the context of a software system and specifying requirements can be a

hard task for engineers. The contexts of applications can be very complex, so that

they can hardly be understood. In this situation it is very difficult to write

requirements. Ackoff states that we commonly fail because our solution does not

apply to the problem but not because the solution is not technically well-built [1].

Nowadays, this statement is still true, as several surveys confirm [31] [20].

Software development is a succession of descriptions in different languages where

a previous description is necessary for the next [26]. So, if changes are incorporated

into a description, previous and succeeding descriptions will have to be changed in

order to maintain conformity. For instance, Boehm [5] states that if a mistake occurs

in a requirements description and it is corrected in code description, the correction

cost could be multiplied by up to 200. Moreover, Mizuno developed the “waterfall of

errors” [24] in which he states that in each stage of software development the

possibility of occurrences of mistakes is bigger than in the previous one, because

each stage relies on products from previous ones.

Thus, it is important to begin a software development with requirements that are

as correct and as complete as possible. Although some literature holds the belief that

correctness and completeness are two attributes that requirements specifications must

satisfy [17], we know that this is unfeasible [12]. However, we have to find ways of

diminishing incompleteness and dealing with the possible conflicts that do arise in

the requirements context. As such, before the specification of requirements and

expectations, it is necessary to understand the context of the application in the

broadest way. An approach based on understanding the context through its culture

and through the study of the context language has been pointed out as a rewarding

strategy, and it is the one we have followed.

The Language Extended Lexicon (LEL) is a technique to specify an application

domain (context) language [22]. LEL is a very convenient tool for experts with no

technical skills, although people with such skills will obtain more profit from its use.

LEL effectively captures and models the application language because it conforms to

the mechanism used by the human brain to organize expert knowledge [33]. In

particular, the convenience of LEL as a tool arises from 3 significant characteristics:

it is easy to learn, it is easy to use and it has good expressiveness. There are several

publications which use LEL in complex domains that validate these claims. Gil et al

[13] state that “the experience of building a LEL in an application completely

unknown to the requirements engineer and with highly complex language can be

considered successful, since users stated that requirement engineers have developed a

great knowledge about the application”. Cysneiros et al [11] state that “the use of

LEL was very well accepted and understood by the stakeholders. As these

stakeholders were non technical experts from a specific and complex domain, the

authors believe that LEL can be suitable to carry out in many other domains”. These

three characteristics contribute significantly to obtain high quality models, as they

allow the actors involved in software development (experts, requirements engineers

and developers with different capacities and abilities) to perform the validation of a

LEL [19].

Thus, it is very important to develop a LEL previous to other work, because with a

LEL we gain knowledge about the context of the application that will be validated

and it helps anchor the shared knowledge. It is possible to identify scenarios [15],

ontologies [7] and crosscutting concerns [2] from LEL. In this paper we show how to

use LEL to obtain requirements statements, User Stories and Use Cases.

It is important to mention that the objective of the strategy proposed is to provide

a preliminary set of functional requirements products which must be enriched and

validated in later phases. Use Cases in particular have a very complex description

because they follow a structure with multiple elements and the strategy provides a

partial description of them. In general, the strategy involves transforming the

information that a LEL captures into different requirements templates, so that the

quality of the requirements obtained depends on the quality of the LEL.

The strategy proposed can be interpreted as a transformation of models [26] and

although it does not provide new knowledge, it helps the actors involved by

providing a systematic way of transforming the information contained in the LEL.

We believe that initial sessions of requirements elicitation are very hard to cope.

Requirements engineers may be facing a new application domain from which they

must discover the requirements. They must gain knowledge, organize that

information and synthesize requirements. In this process, the requirements engineers

may misunderstand or forget things. Hence, we propose a strategy to capture the

language from the expert and transform that information into an initial set of

requirements that must be later on refined, but which are an important starting point

to work on.

Requirements engineers who do not use LEL will derive benefits from applying

our approach because in spite of the extra work of constructing LEL, it is easier to

construct it than to analyze the context of the application and fill in complex

requirements templates. Moreover, constructing a LEL before writing requirements

will help to solve conflicts which could arise at later stages.

The rest of the paper is organized in the following way. Section 2 presents some

background necessary to understand the strategy. Section 3 describes the derivation

strategy. Section 4 shows a case study. Section 5 discusses some related works.

Finally, section 6 states some conclusions and future works.

2 Background

This section describes the Language Extended Lexicon (LEL), a technique used to

capture the language of the application domain. Then, three ways of specifying

requirements are described: requirements statements, User Stories and Use Cases.

2.1 Language Extended Lexicon (LEL)

LEL is a glossary whose goal is to register the definition of terms that belong to a

domain. It is tied to a simple idea: “understand the language of a problem, without

worrying about the problem” [22].

Terms (called symbols within LEL) are defined through two attributes: notion and

behavioural responses. Notion describes the symbol denotation, which are intrinsic

and substantial characteristics of the symbol, while behavioural responses describe

connotation, i.e. the relationship between the term which is described and others.

There are two principles that must be followed while describing symbols: the

circularity principle (also called closure principle) and the minimal vocabulary

principle. The circularity principle states that the use of LEL symbols must be

maximized when describing a new symbol. The minimal vocabulary principle states

that the use of words that are external to the Lexicon must be minimized. These

principles are vital in order to obtain a self-contained and highly connected LEL.

Connections among symbols determine that LEL can be viewed as a graph.

Each symbol of LEL belongs to one of four categories: subject, object, verb or

state. This categorization guides and assists the requirements engineer during the

description of attributes. Table 1 shows each category with its characteristics and

how to describe them.

Table 1. LEL categories.

Category Characteristics Notion Behavioral responses

Subject
Active elements which

perform actions

Characteristics or condition

that subject satisfies
Actions that subject performs

Object
Passive elements on which

subjects perform actions

Characteristics or attributes

that object has
Actions that are performed on object

Verb
Actions that subjects

perform on objects
Goal that verb pursues Steps needed to complete the action

State
Situations in which subjects

and objects can be
Situation represented

Actions that must be performed to

change into another state

Some examples of LEL symbols are presented here. The classic bank application

domain is used to show symbols from each category. The example consists in a bank

which allows clients to open and close accounts. If the account is activated (open) the

client can deposit and withdraw money from it. Figure 1 shows a state machine with

both states: activated and closed, and it also shows the conditions which allow

transitions: the action open allows us to obtain an activated account, while the action

close allows us to close the account. Although closed accounts exist, they are blocked

from any operation. Then, the operations deposit and withdraw are related to the

state activated to show that both operations can be carried out in that state.

Open

Deposit
Withdraw

Activated Closed

Close

Fig. 1. States and operations of a bank account.

The following symbols from the bank application domain are identified: subject

client (figure 2); object account (figure 3); verbs open, deposit, withdraw and close

(figure 4); and states activated (figure 5) and closed. There are underlined words in

the descriptions of symbols; these words are expressions that are defined in the LEL

too (circularity principle). They represent a kind of link which can be navigated to

explore the definition of the other word. It is important to mention that the

behavioural responses of client (figure 2) and account (figure 3) are the same

because they describe the same actions from opposite points of view.

2.2 Requirements Specification

IEEE standard 830-1998 states that requirements must describe clearly what the

software system must do [17]. Thus, they recommend using the expression “the

system shall…” because it states clearly the functionality and the obligatory

condition that the software system must implement. In this sense it is important to

use the word “shall” instead of using other weak expressions as “should” or “could”

[28] [32]. The following example shows a requirement from the bank application.

Subject: client

Notion

Person that operates an account.

Behavioral responses

The client can open an account.
The client can deposit money into his account.

The client can withdraw money from his account.

The client can close an account.

Fig. 2. Client symbol description.

Object: account

Notion

The account has a balance.

Behavioral responses

The client can open an account.
The client can deposit money into his account.

The client can withdraw money from his account.

The client can close an account.

Fig. 3. Account symbol description.

Verbs: close

Notion

Act of ceasing to operate the account.

Behavioral responses

The client withdraws money from his account.

The bank denies any account operation.

Fig. 4. Close symbol description.

State: Activated

Notion

Situation where the client is ready to use an open

account.
Behavioral responses
The client can close the account and he will have a

closed account.

Fig. 5. Activated symbol description.

The system shall close an account.

Fig. 6. Requirement statement.

2.3 User Stories

A user story is a description in natural language that captures what the user wants

to achieve. User stories are used with agile software development methodologies and

generally adjust to a template which considers three attributes: a role, a goal/desire

and a reason [9]. The goal/desire represents the requirement that the application

must fulfill. The role defines the user who interacts with the application in order to

use the feature described by the goal/desire. Both these attributes refer to elements

within the scope of the application. In contrast, the reason belongs to the context of

the application and it states why the user requires that the application provide the

functionality described in goal/desire (Figure 7).

We can identify four User Stories from the bank application, one for each verb:

open an account, close an account, withdraw money and deposit money. The role is

the same in all the User Stories: the client. Then, the reason must be stated according

to the verb. We provide an example of a User Story according to the close account

operation (Figure 8).

As a <role>,

I want <goal/desire>

so that <reason>.

Fig. 7. User Story description.

As a client,

I want to close an account

so that I cease to operate the account.

Fig. 8. Close an account User Story.

2.4 Use Cases

Jacobson developed a way of specifying the behaviour of an object oriented

application describing its use [18]. Use Cases can be specified with different levels of

abstraction. They vary from conceptual diagrams with many types of relationships to

textual descriptions with different levels of granularity. Cockburn [8] identifies three

levels of detail in writing use cases. First, there is the brief use case, which consists

of a few sentences summarizing the objective of the use case. Then, there is the

casual use case, which consists of a few paragraphs of text, describing the sequence

of main actions of the use case. Finally, there is the fully dressed use case, which is a

formal document based on a detailed template with various sections. This is what is

most commonly understood as use case. The full description includes a description of

the main success scenario as well as alternatives or variants. In this paper we

concentrate only on the main success scenario and some other attributes such as

name, which is a short statement of the action, and goal, which is a goal in the

context, so it is in fact the reason. Then, there is a description of how to implement

the functionality. There are descriptions of the state of the world before and after the

execution of the Use Case, which define the condition that must be validated

previous to execution and the situation that must be achieved after the execution.

These attributes are the precondition and success end condition. Finally, there is a

description of the role the user must fulfill while interacting with this functionality as

well as a description of the actions the system and user perform during the execution

of the functionality. This template is summarized in Figure 9.

We can identify four Use Cases from the bank application, one for each verb: open

an account, close an account, withdraw money and deposit money. The primary

actor is the same in all the Use Cases: the client. The rest of the attributes must be

stated according to the verb. We provide an example of a Use Case related to the

close account operation (Figure 10).

Use Case: <name: goal as a short verb phrase>

Goal in Context: <a longer statement of the goal >

Preconditions: < the state of the world to allow the
execution of the use case>

Success End Condition: <the state of the world

upon successful completion>

Primary Actor: <role of the primary actor >

Main success scenario

<actions description>

Fig. 9. Use Case Description.

Use Case: Close an account

Goal in Context: Cease to operate an account.

Preconditions: The account must be activated

Success End Condition: The account will be closed

Primary Actor: Client

Main success scenario
The client withdraws money from his account.

The bank denies any account operation

Fig. 10. Close Use Case.

3 Derivation Strategy

The derivation strategy is inspired by Hadad’s strategy for deriving Scenarios

from LEL [15]. In Hadad’s strategy verbs correspond to Scenarios which have actors

who perform the actions. These actors correspond with the symbols of the category

subject. Scenarios represent behaviour which will be implemented in a software

application, as requirements statements, User Stories and Uses Cases represent

functionality. User Stories and Use Cases have actors or roles in their descriptions,

so subjects must be considered since they are naturally linked to verbs, because

subjects have a description of the actions they perform in their behavioural

responses, and these actions are the verbs which originate the requirements. Use

Cases also include information about pre and post conditions. These conditions are

obtained from state symbols. The following section describes in detail the derivation

of each product.

Since LEL describes the application domain, it is necessary to identify the sections

of the LEL which are included in the scope of the software system. This task consists

in identifying which symbols are within the scope of the software application and

which are beyond it. Then, the derivations detailed in the following sections are

applied to the symbols which belong to the scope of the software system. This

distinction may not be clear-cut, because a symbol may have a part of its description

within the scope of the application and a part beyond it. Nevertheless, the aim of the

strategy is to produce the initial set of requirements as an aid in the first sessions of

elicitation. Later, once the preliminary set of requirements are refined and enriched

in further sessions of analysis, the limit of the application will be precise and

completely established. Moreover, the derivation proposed is a simple transformation

of product structure, and some text may need rewriting in order to make sense in the

templates or in order to translate domain oriented description from LEL into

software oriented description of requirements products.

3.1 From LEL To Requirements

Since verbs are actions within the scope of the software system, they are

candidates for requirements that the software system must implement. The strategy

can be described in the following way using ATL transformation [3] (Figure 11) and

with a diagram (Figure 12).

rule LEL2RequirementStament {

from s : Symbol (s.isVerb())

to r : RequirementStament (statement <-

'The system shall '+ s.name) }

Fig. 11. ATL for derivation of requirements.

The system shall close

Verb: close

Notion:
...
Behavioural responses:
...

Fig. 12. Graphic derivation of requirements.

Derivation can be exemplified with Figure 4 which defines the verb symbol and

figure 6 that shows the requirement statement.

3.2 From LEL To User Stories

User Stories have three attributes: a role (“As a…”), a requirement (“I want…”)

and a reason (“so that…”). The “I want” attribute must be related to verbs according

to the reasoning of previous derivations. Then, a role is necessary to perform the

action. Subjects are naturally related to verbs, because the behavioural responses of

subjects include the actions that they perform. Thus, the attribute “As a” is the

subject who performs the action stated by the verb. Finally, the attribute “So that” is

a reason, an objective; verb notion has this information. The strategy can be

described in the following way using ATL transformation (Figure 13) and with a

diagram (Figure 14). It is important to mention that Figure 13 does not include the

fixed text: “As a… I want to… so that…” because of space limitations and figure

clarity.

rule LEL2UserStory {

from s : Symbol (s.isVerb())

to u : UserStory (

u.role <-

s.referencedInBehaviouralResponsesFrom()

-> select (x| x.isSubject()) -> first()

u.goal/desire <- s.name

u.reason <- s.notion }

Fig. 13. ATL for Derivation of User Stories.

As a client
I want to close
So that I can cease to
operate the account

Verb: close
Notion:
Act of ceasing to
operate the account
Behavioural responses:
...

Subject: client
Notion:
...
Behavioural responses:
The client can deposit…
The client can close…

Fig. 14. Graphic derivation of User Stories

.

Derivation can be exemplified with Figure 2 which shows the subject client,

Figure 4 which defines the verb close and Figure 8 which shows the User Stories.

3.3 From LEL To Use Cases

Use Cases represent interactions with the application. Since LEL verbs represent

actions within the scope of the application, every verb must be derived into a Use

Case. The id of the Use Case must be the name of the verb. As verb symbols have a

goal in their notion, this notion is used to describe the goal in the context of the Use

Case. The behavioural responses of verb symbols describe the actions needed to

reach the goal, so these behavioural responses are used to describe the main success

scenario. Then, a role is necessary to perform the action. Subjects are naturally

related to verbs, because the behavioural responses of subjects include the actions

that they perform. Thus, the primary actor is the subject who performs the action

stated by the verb. State symbols are candidates for pre and post conditions [27]. It is

necessary to identify which states are related to the verb used to describe the Use

Case, and both related states must be used as pre and post conditions. It is important

to mention that the LEL may not have states related to each verb, so in this situation

pre or post conditions or both could be left blank. The strategy can be described in

the following way using ATL transformation (Figure 15) and with a diagram (Figure

16) which shows symbols of the state category in circles and of the other categories

in rectangles. Derivation can be exemplified with figure 2 which shows the subject

client, then with figure 4 which defines the verb withdraw. The state of Figure 5

shows how an account is transformed from activated to closed. Finally, Figure 10

describes the Use Case.

helper LEL def: StateUsingVerbAsTransition(): Symbol =

(self.referencedInBehaviouralResponsesFrom()->select (x|x.isState())-> first ())

rule LEL2UseCase {

from s : Symbol (s.isVerb())

to u : UseCase (

u.useCase <- s.name

u.goalInContext <- s.notion

u.preconditions <- (StateUsingVerbAsTransition).name

u.successEndCondition <- (StateUsingVerbAsTransition) .behaviouralResponses() ->

select (x|x.isState()) -> first()).name

u.primaryActor <- s.referencedInBehaviouralResponsesFrom() -> select

(x|x.isSubject()) -> first()

u.mainSuccessScenario <- s.behaviouralResponses }

Fig. 15. ATL for derivation of Use Cases.

Use case: close
Goal in context: cease to

operate the account
Precondition: the account
must be activated
End condition: The account
will be closed
Primary actor: client
Main Success scenario
The client withdraws money
from his account.
The bank denies any
account operation.

Verb: close
Notion:
Act of ceasing to operate
the account

Behavioural responses:
The client withdraws
money from his account.
The bank denies any
account operation.

Subject: client
Notion:
...
Behavioural responses:
The client can close an
account…

Sate: activated
Notion: ...
Behav responses:
The client can close
the account and the
account will be
closed

Sate: closed
Notion: ...
Behavioral
responses:

Fig. 16. Graphic Derivation of Use Cases.

4 Case Study

This section describes a particular application domain and a LEL, and discusses

the requirements statements, User Stories and Use Cases derived from LEL. The case

study involves a real application which was developed for an insurance company by

one of the authors of this paper. The LEL was developed previous to software

development. The main requirement artifact was requirements statements but User

Stories and Use Cases were also developed when more detailed description was

needed. In that situation descriptions of requirements were provided intuitively and

the strategy described in this paper was not followed.

 In this section we describe the application domain and its LEL. We also derive

requirements statements, User Stories and Use Cases from LEL in order to contrast

the results of the derivation with the requirements intuitively written. We do not

include here the requirements products derived because of space limitation, but we

discuss the differences between the requirements products intuitively written and the

application of the approach.

4.1 Application Domain

The application domain is an issue tracker which is tailored for a specific

organization: an insurance company with an area providing information technology

support. The use of this application has two objectives. The main goal is to manage

all issues in the organization in order to prevent any issue from getting lost. Also, the

tracking of all the issues will be used to improve the business processes within the

area. Whatever the objective, the LEL captures the current situation of the

application context.

The area is headed by a chief of area, who has 3 sections in charge: development,

communication and service desk. Each section has a chief of section and a group of

specialists.

The issue is described through the following information: name, description,

requester, priority, deadline and category. The basic workflow of an issue consists in

the following steps. First, employers from the insurance company create an issue.

After that, the issue goes directly to a chief of section if the categories were correctly

entered, since they can be used to determine the section. If the categories were not

correct, the issue goes to the chief of area who assigns the issue to a chief of section,

and the chief of section assigns it to a specialist. Specialists can work on an issue

until the issue is finished. They can also pause an issue if they receive another with a

higher priority. Another important feature is the possibility of dividing an issue into

several sub-issues.

There is an important characteristic about visibility of issues. The Chief of area

has the privilege of seeing all the issues, while the chief of section can only see the

issues belonging to his section and the specialist can only see his issues.

In order to analyze the performance of the area, it is possible to calculate stats in

relation to issues assigned and finished. Based on stats, the chief of area has the

privilege of moving specialists from one section to another in order to improve the

throughput of the area.

Figure 17 shows a state machine which describes the states in which an issue can

be. It is worth mentioning that the state machine is not an input for the strategy. The

figure also shows the conditions which allow transitions over the arrows. There are

also some actions next to the states, meaning that the action must be performed in

that state. Finally, there is one action that can be performed independently of states.

4.2 LEL

The issue tracking LEL has 39 symbols. There are 7 subjects, 12 objects, 12 verbs

and 6 states. Subjects can be organized into two groups: a group of roles (4 symbols)

and a group of sections (3 symbols). Then, there is a main object (issue) and the

attributes that the issue has. Some attributes accept several values, so the attribute

(priority and category) and the possible values (high / medium / low and the

categories for each section) are described. Verbs are actions that at least one role can

perform and States correspond to the situation in which the issues can be. The list of

symbols is detailed in table 2.

Create

Define
section

Assign
specialist

Start
working Finish

working

Calculate
stats

Calculate
stats

Move
specialist

resume pause

New

Section
defined

Paused

Specialist

assigned

Working

Finished

Fig. 17. States and operation of issue tracking application.

Table 2. LEL symbols of issue tracking application.

Subjects Objects Verbs States

Employer of the

insurance company

Issue Create an issue New

Chief of area Workload ratio Define section Section defined

Chief of section Priority Assign issue Specialist assigned

Specialist Low priority Start working Working

Service desk section Medium priority Finish working Finished

Development section High priority Calculate stats Paused

Communication section Category Move specialists

 Service Desk categories Create sub-issue

 Development categories Edit issue

 Communication categories Cancel

 Deadline List issues

 Sub-issue Change state

4.3 Requirements

The strategy proposed obtains the requirement statements that were written

intuitively while specifying the issue ticket application, since all the symbols

identified as verbs correspond to requirements statements.

There are two non functional requirements which are related to authorization and

visualization, but they are beyond the scope of the strategy. There are also some

business rules which are beyond the scope of the strategy too. For example, a

business rule states that “An issue with no category is assigned to the chief of area”,

which is accordingly described by the symbol assign issue. The strategy is right in

not identifying it as a requirement because it is not.

Thus, the strategy has obtained all the functional requirements statements needed

for the application and nothing more.

4.4 User Stories

The strategy proposed obtains the User Stories that were written intuitively while

specifying the issue ticket application, because all the symbols identified as verbs

correspond to User Stories.

User Stories provide a more complex description than requirements statements

because User Stories add a role and a reason. In general, roles and requirements are

easily described without any kind of assistance (i.e. this strategy), but it is sometimes

difficult to describe the reason as it refers to something located outside the

application but within the context of the application domain. Requirements engineers

sometimes find it difficult to cross this boundary.

4.5 Use Cases

The strategy proposed obtains the Use Cases that were written intuitively while

specifying the issue ticket application, because all the symbols identified as verbs

correspond to Use Cases.

Attributes Use Case name, Goal in context and Primary Actor are in general easy

to describe and they represent the same information that is described in User Stories.

Main success scenario is also easy to describe in general although it requires a level

of detail that in many cases is not provided during intuitive description, because the

requirement engineer has a lot of attributes to complete and he cannot pay attention

to some details. The strategy proposed obtains the main success scenario from the

behavioural responses of verbs. This allows the requirements engineer to focus on

describing very few attributes, as verbs are described with notion and behavioural

responses only. Then the strategy proposed combines some simple descriptions to

obtain a complex one such as a Use Case.

The only disadvantage is that LEL does not differentiate between application and

context of the application, so the main success scenario does not provide an explicit

description of what the system and what the user must do. In contrast, it provides

descriptions of what different roles must do and the practitioner reading the Use

Case must interpret whether the role is within the system or outside of it.

Finally, there are two attributes that are generally difficult to complete during

intuitive description and demand a great effort: precondition and success end

condition. In general these attributes are difficult to identify but in LEL they are

directly captured through state symbols. Thus, the strategy identifies those symbols

and uses them to describe the Use Case.

5 Related Works

It is very hard to analyze natural language in order to extract requirements, but at

the same time natural language is key in Requirements Engineering [4]. There are

some approaches which perform text mining on documents to identify verbs and

objects which lead to requirements [14]. Other approaches perform text mining to

identify subjects, roles, tasks and objects [31]. These kinds of natural language

analyses have a problem of term ambiguity, which is why we decided to work with

LEL, a structured glossary constructed from natural language, instead of analyzing

natural language documents. By analyzing a LEL we obtain a preliminary version of

different specifications products: requirements statements, user stories and use cases.

We agree with Ryan [29] who states that validation of requirements must remain an

informal and social process, so our approach obtains a preliminary version of

requirements products that has to be completed afterwards.

Another important distinction is that our approach considers that the application

domain knowledge captured by a LEL has information about requirements, so we

can use a LEL to derive them. Lee et al [21] use domain knowledge information to

enrich requirements, but they need a previous version of requirements to analyze and

combine them with knowledge information so as to provide a richer version of them.

Niu et al [25] perform text mining to identify requirements statements in a similar

way to our approach. They look for a “verb – direct object” structure. Although we

use verb symbols to derive requirements statements, verb symbols have sentences in

their behavioural responses with the structure “subject – verb – direct object” similar

to the one used by Niu.

Hadad [16] obtains requirements statements from scenarios. She considers

episodes of scenarios as requirements statements candidates. In our approach, we use

the behavioural responses from LEL as requirements statements candidates, which in

fact can be considered predecessors of episodes, so we perform the same

identification but on a previous product.

Breitman et al [6] propose a strategy to identify and manage User stories.

Nevertheless, the template they use is not “as a… I want… so that…”. They use

Scenarios that are enriched with risk and priority attributes.

Li et al [23] use natural language to derive use cases. They organize text into

subject-verb-object clauses. Then, they generate a UML class diagram. Further

analysis allows them to generate use cases. Although subject-verb-object clauses have

similarities with descriptions of symbols in LEL, our approach differs from that

because we derive Use Cases directly from LEL, while Li obtains a class diagram as

an intermediate step.

Cysneiros et al [10] use LEL to identify and register non functional requirements.

Then, they obtain use cases from LEL (which contains functional description) and

the non functional requirements previously identified. The non functional

requirements obtained before Use Case description are used as pre and post

conditions, while our work uses states to derive information for pre and post

conditions.

6 Conclusions and Future Works

We have presented an approach to produce preliminary requirements

specifications straightforwardly from the application domain language captured by

the Language Extended Lexicon. Eliciting requirements can be very disappointing if

miscommunication and lack of knowledge permeates the process. Tackling these

issues is hard, mainly due to the cultural clash among stakeholders. With the

approach proposed we focus on the language of the context, and from there we

obtain more complex requirements descriptions through selecting, sorting and

combining the basic elements. Moreover, we provide a way of coping with the

ambiguity of natural language, as we use a structured and organized product instead

of natural language documents. Apart from this, we provide an instrument of

traceability. Further work will involve more evaluations based on different cases, but

also exploring possible evolutions of the current process.

References

1. Ackoff, R.: Redesigning The Future, Wiley (1974)

2. Antonelli, L., Rossi, G., Leite, J.C.S.P. : Early identification of crosscutting concerns in

the domain model guided by states, in proceedings of the 2010 ACM Symposium on

Applied Computing, Sierre, Switzerland, ISBN:978-1-60558-639-7, March 22-26 (2010)

3. ATL a model transformation technology, http://eclipse.org/atl/

4. Berry, D.M.: Ambiguity in Natural language Requirements Documents (Extended

Abstract), 14th Monterrey Workshop, Monterey, CA, USA, September, 1-7 (2007)

5. Boehm, B.W.: Software Engineering, Computer society Press, IEEE (1997)

6. Breitman, K.K., Leite, J.C.S.P.: Managing User Stories, in proceedings of the

International Workshop on Time- Constrained Requirements Engineering (2002)

7. Breitman, K.K., Leite, J.C.S.P.: Ontology as a Requirements Engineering Product, In

Proceedings of the 11th IEEE International Conference on Requirements Engineering

(RE), IEEE Computer Society, Monterey Bay, California, USA, ISBN 0-7695-1980-6

(2003)

8. Cockburn, A.: Writing Effective Use Cases. Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc. ISBN 0-201-70225-8 (2001)

9. Cohn, M.: User Stories Applied, Addison Wesley, ISBN 0-321-20568-5 (2004)

10. Cysneiros, L.M., Leite, J.C.S.P.: Driving Non-Functional Requirements to Use Cases

and Scenarios, XV Simpósio Brasileiro de Engenharia de Software (2001)

11. Cysneiros, L.M., Leite, J.C.S.P.: Using the Language Extended Lexicon to Support Non-

Functional Requirements Elicitation, in proceedings of the Workshops de Engenharia de

Requisitos, Wer’01, Buenos Aires, Argentina (2001)

12. Finkelstein, A.C.W., Gabbay, D., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency

handling in multiperspective specifications, IEEE Transactions on Software Engineering,

doi: 10.1109/32.310667, vol.20, no.8, Aug, 569-578 (1994)

13. Gil, G.D., Figueroa, D.A., Oliveros, A.: Producción del LEL en un Dominio Técnico.

Informe de un caso, in proceedings of the Workshops de Engenharia de Requisitos,

Wer’00, Rio de Janeiro, Brazil (2000)

14. Golding, L., Berry, D.M.: AbstFinder, A Prototype Natural Language Text Abstraction

Finder for Use in Requirements Elicitation, Automated Software Engineering, 375-412,

(1997)

15. Hadad, G., Kaplan, G., Oliveros, A., Leite, J.C.S.P.: Construcción de Escenarios a

partir del Léxico Extendido del Lenguaje, in Proceedings SoST, 26JAIIO, Sociedad

Argentina de Informática y Comunicaciones, Buenos Aires (1997)

16. Hadad, G.D.S.: Uso de Escenarios en la Derivación de Software, Tesis Doctoral,

Universidad Nacional de La Plata (2008)

17. IEEE, IEEE Recommended Practice for Software Requirements Specifications, IEEE Std

830-1998 (Revision of IEEE Std 830-1993)

18. Jacobson, I., Christerson, M., Jonsson, P., Overgaard. G.: Object-Oriented Software

Engineering: A Use Case Driven Approach, ACM Press, Addison-Wesley, ISBN

0201544350 (1992)

19. Kaplan, G., Hadad, G., Doorn, J., Leite, J.C.S.P.: Inspeccion del Lexico Extendido del

Lenguaje, In: proceedings of the Workshops de Engenharia de Requisitos, Wer’00, Rio

de Janeiro, Brazil (2000)

20. Keil, M., Cule, P.E., Lyytinen, K., Schmidt, R.C.: A framework for identifying software

project risks, in Communication of the ACM, volume 41, Issue 11, nov (1998)

21. Lee, B. S., Bryant, B.R.: Automation of software system development using natural

language processing and two level grammar, In Proceeding of the Workshop Radical

Innovations of Software and Systems Engineering in the Future, Monterey, 244-257

(2002)

22. Leite, J.C.S.P., Franco, A.P.M.: A Strategy for Conceptual Model Acquisition, In

Proceedings of the First IEEE International Symposium on Requirements Engineering,

San Diego, California, IEEE Computer Society Press, 243-246 (1993)

23. Li, K., Dewar, R.G., Pooley, R.J.: Requirements capture in natural language problem

statements, Technical report HW-MACS-TR-0023, Heriot-Watt University, Edinburgh,

Scotland, UK (2004)

24. Mizuno, Y.: Software Quality Improvement, IEEE Computer, Vol. 16, No. 3, March, 66

– 72 (1983)

25. Niu, N., Easterbrook, S.: Extracting and Modeling Product Line Functional

Requirements, in Proceedings of the 16th IEEE International Requirements Engineering

Conference, September 08-12, 155-164 (2008)

26. Pons, C., Giandini, R., Pérez, G.: Desarrollo de Software dirigido por Modelos -

Conceptos teóricos y su aplicación práctica, Editorial EDULP & McGraw-Hill

Educación, Volumen 1, 300 páginas, ISBN: 978-950-34-0630-4 (2010)

27. Rocco, V., Villalba, J.C.: Una heuristica de derivación de LEL a Escenarios, Tesis de

grado, Universidad Nacional de La Plata, Mayo (2010)

28. Rosenberg, L., Requirements Engineering. Methodology for Writing High Quality

Requirement Specifications and for Evaluating Existing Ones, Software Assurance

Technology Center, NASA Goddard Space Flight Center Greenbelt, MD, September 24

(1998)

29. Ryan K.: The Role of Natural Language in Requirements Engineering, In Proceedings of

the IEEE International Symposium on Requirements Engineering, San Diego, CA, IEEE

Computer Society Press, Los Alamitos, CA, 240-242 (1993)

30. Sawyer, P., Rayson, P., Garside, R.: REVERE: support for requirements synthesis from

documents, Information Systems Frontiers, v.4 n.3, September, 343-353 (2002)

31. Standish Group, The Chaos Report,

http://www.standishgroup.com/chaos_resources/index.php (1995)

32. Wilson, W. M., “Writing Effective Requirements Specifications”, Software Technology

Conference (1997)

33. Wood, L.E.: Semi-structured interviewing for user-centered design, Interactions of the

ACM, april-may, 48-61 (1997)

