
On the construction of specifications from requirements

Zhi Li1,2, Jon G. Hall3, and Lucia Rapanotti3

1 College of Computer Science and Information Technology, Guangxi Normal University,
No.15 Yu Cai Road, Guilin, Guangxi 541004, P. R. China

2 Key Laboratory of High Confidence Software Technologies (Peking University),
Ministry of Education, Beijing, 100871, CHINA
E-mail:zhili@mailbox.gxnu.edu.cn

3 Centre for Research in Computing, The Open University, Walton Hall, Milton Keynes,
Buckinghamshire, MK7 6AA, UK

E-mail:{J.G.Hall,L.Rapanotti}@open.ac.uk

Abstract. Transforming real-world requirements into specifications which are
appropriate for subsequent software development is at the heart of Requirements
Engineering. Doing it systematically remains an open challenge. In this paper we
present a formal approach to systematise the move from requirements to specifi-
cations in the context of Jackson’s Problem Frames.

Keywords: Problem Frames, Problem Progression, Requirements, Specifications,
Communicating Sequential Processes

1 Introduction

One of the contributions of Jackson [1] is a recognition of the distinction between re-
quirements and specifications: requirements pertain to phenomena deeply embedded
in the real-world and which are meaningful to stake-holders; specifications relate to
phenomena at the interface with the machine. Capturing real-world requirements and
deriving appropriate specifications is then at the heart of RE.

Jackson ([2, Page 103]) suggests Problem Progression as a way of moving from
requirements to specifications, but gives no technical detail, perhaps because of the lack
of a suitable formal underpinning for the Problem Frame framework. Hall, Rapanotti
and Jackson started that formalisation in [3]. In this paper, based on the doctoral work
of Li ([4], [5]), we describe a problem progression-like construction of specifications
from requirements.

This paper is structured as follows: Section 2 recalls Problem Frames and prob-
lem progression; in Section 3, we show how to model a problem diagram in CSP, and
show how the resultant is related to Lai’s Quotient operator; Section 4 illustrates the
approach on an example. Section 5 contextualises the work in the literature and Section
6 concludes.

2 Problem Frames and Problem Progression

This work is located within Jackson’s Problem Frames framework (PF) [2]. It proposes
a formal CSP encoding of Jackson’s problem diagrams to which the Lai’s Quotient
operator can be applied to progress requirements to specifications.

2 Zhi Li et al.

2.1 Problem Diagrams and their meaning

In Problem Frames [2] a software related problem, shortly problem, is viewed as a re-
quirement in a real-world context for which a software solution is sought. Problem de-
scriptions are captured and expressed by problem diagrams, which place the computing
machine upon which code satisfying the specification will run, the problem (real-world)
context, the requirement and the phenomena that relate them in representative juxtapo-
sition.

Briefly, phenomena are at the basis of a problem’s descriptions, they being the ob-
servable mechanism by which one domain affects others. Descriptions are built, through
the cause and effect relationships of phenomena one to another, into domains which are
thus sets of related phenomena that are usefully treated as a unit, identifiable within the
real-world.

The problem context, as a collection of domains, is converted to be a problem
through the addition of a requirement: a constraint on the real-world relationships that
are desired through the development of the software. The requirement for a problem
provide the real-world effects that should be observed if correctness of the solution
specification is to be verified.

 S K R
S ! c

K ! o

d

e

Fig. 1. A generic problem diagram, K may be arbitrarily complex

For illustration of a problem diagram, see Figure 1 in which K is the problem con-
text (with only one domain in this case), R is the requirement and S is the software
solution specification. K and S interact through phenomena in set c controlled4 by S
(S ! c) and observed by K , and set o controlled by K (K ! o) and observed by S . The
requirement, R, constrains phenomena set d and refers to set e5.

According to [3] a problem diagram has, as its formal semantics, the collection of
specifications that control those phenomena exposed for control by its environment, that
observe all other exposed phenomena and that satisfy the Requirement, i.e.,

c, o : [K ,R] = {S : Specification | S controls c ∧ S observes o ∧ K ,S solves R}

where solves indicates satisfaction6. For ease of reference, we will refer to this as the
HRJ-semantics. Finding an element of the HRJ-semantics for any particular problem
we call the challenge for that problem. (For how such challenges may be met in general
see, for instance, [8, 9].)

4 We use ! instead of ! to distinguish it from the CSP’s ! used later on in the paper.
5 Although, as here, the distinction between constraint and reference is not always distinguish-

able within PFs.
6 related to Zave & Jackson’s notion of correctness [6], as generalised in Hall and Rapanotti’s

Problem Oriented Engineering (POE, [7]).

On the construction of specifications from requirements 3

2.2 Problem Progression

The idea of problem progression was briefly introduced in [2], and is illustrated in the
following figure adapted from that work. In the words of Jackson:

“You can think of any problem [expressed in PF] as being somewhere on a
progression towards the machine, like this:

M DD DC DB DA RA

M DD DC DB RB

M DD DC RC

M DD RD

M RM

The top problem is deepest into the world. Its requirement RA refers to domain
DA. By analysis of the requirement RA and the domain DA, a requirement RB
can be found that refers only to domain DB, and guarantees satisfaction of RA.
This is the requirement of the next problem down. Eventually, at the bottom,
is a pure programming problem whose requirement refers just to the machine
and completely ignores all problem domains.”

In the above figure, the solution to each of the problems is represented by the same
machine M since the problems are transformed in a solution-preserving way: the solu-
tion to the transformed problem satisfies the original problem. To see the importance of
problem progression, we note that the HRJ-semantics is not constructive: it does not tell
us how to determine an element of the collection which constitutes the formal semantics
of a problem diagram. We note, however, that if c, o : [K ,R] is the semantics of the
initial problem at the top of a progression, say Pinitial , and c′, o′ : [K ′,R′] is that of
the progressed problem at the bottom, say Pprogressed , then the challenge for Pprogressed

can be met by applying progression to any element of the semantics of Pinitial .

3 Modelling and Progressing Problem Diagrams with CSP

Problem Frames do not presuppose any one description language for problem diagrams.
In this section, we argue that we can use CSP as one such description language. The ad-
vantage is that once such a CSP description exists, then we can apply the Lai’s Quotient
operator.

4 Zhi Li et al.

3.1 Modelling a Domain as a CSP Process

We argue that there are similarities (in fact, a close match) between Jackson’s notion
of a domain in Problem Frames and the notion of a process in CSP: they are both
self-contained entities that interact with other domains (processes) through shared phe-
nomena (alphabet). Based on this observation, the formalisation becomes then quite
straightforward: a domain D in Problem Frames is seen a process D , with its set of
shared phenomena as the alphabet αD . Individually, a single shared phenomenon (in-
cluding an instance of shared event, state or role) of domain D is formalised as a single
external event ev of process D . Note this does not prevent D having “internal” phenom-
ena, only that such phenomena should be hidden from its environment through event
hiding.

The notion of parallel composition in CSP was introduced to investigate the be-
haviour of a complete system composed of subsystems that act and interact with each
other as they evolve concurrently. For example, when we analyse the combined be-
haviour of two processes put together, their interactions (if they exist) can be regarded
as events that require simultaneous participation of both processes involved. Hoare [10]
argues that we can assume that the alphabets of the two processes are the same when
analysing their overall behaviour. He uses the notation P ||Q to denote the process that
behaves like the composition of processes P and Q interacting in lock-step synchroni-
sation.

In Problem Frames, the interactions between domains and solution have similar
characteristics: each phenomenon they share is considered instantaneous, and both do-
mains are simultaneously engaged in the same phenomenon [2]. To link Problem Frames
and CSP, we note that the context K (described in CSP) and solution S (also described
in CSP) stand in juxtaposition as K || S . That it satisfies the requirement R can then be
translated into CSP as K || S sat R7.

3.2 Interpreting Problem Progression in terms of Lai’s Quotient Operator

To meet the challenge of finding a CSP process specification S such that K || S sat R,
we need a new operator that can perform the opposite calculation of parallel composi-
tion. Lai and Sanders [11] extend Hoare and He’s notion of “weak inverse” of sequen-
tial composition to parallel composition and they have given the weakest environment
calculus to provide the weakest process X that placed in parallel with an established
subcomponent P satisfies their overall specification R:

X || P sat R⇔ X sat P \\R

P \\R is called the weakest environment of a process. Lai and Sanders [11] provide
a closed predicate definition for the weakest environment: given specifications P , R
and a chosen set A ⊆ αP , the weakest environment of P in R, denoted P \\R with

7 That sat is subsumed in the POE notion of of satisfaction is left as an exercise for the reader.

On the construction of specifications from requirements 5

alphabet αR \ αP ∪A as the specification:

P \\R(tr , ref) , ∀ur : traces(R) ∀ rep ⊆ αP
• [tr = ur � α (P \\R)
∧ P(ur � αP , rep)
⇒ R(ur , rep ∪ ref)]

For us, the importance of Lai’s Quotient operator is that it provides a (in some sense)
canonical solution to a problem challenge, at least when domains are described in the
CSP family of notations. Now the HRJ-semantics (at least in the simple case when
c ∪ o = d ∪ e) becomes:

c, o : [K ,R] = {S : Specification | S ! = c ∧ S? = o ∧ S sat K \\R}.

Figure 2 illustrates the role of Lai’s Quotient operator in problem progression.

 X P(ur↾αP, rep) R(ur, rep∪ref)

 X P\\R(tr, ref)

problem progression
achieved by applying
the quotient operator

Fig. 2. A generic problem progression illustrating the application of Lai’s Quotient operator

4 Example

Our illustrative example is a Point-of-Sale (POS) system which allows customers to
scan and pay for their shopping without any intervention from supermarket staff. Here
is the problem description:

A new point-of-sale (POS) system is needed to process sales for a supermarket
shop in the UK. The POS includes both the desired software and some hard-
ware purchased from a third party, including a barcode reader, a cash acceptor
and dispenser handler, a touch-screen display, and a receipt printer, etc. The
problem is that customers should pay for and receive a receipt for the correct
amount on presentation of items to the POS system.

The problem diagram for the POS is illustrated in Figure 3.
Table 1 shows the identified domains and their CSP descriptions. Since we are in

the realm of CSP, descriptions for the diagram are written in CSP, followed by a simple
narrative for those not familiar with that language.

For brevity of presentation, we use item , notice , pay , change , and receipt as a short
form of events present(item), present(notice), present(payment), present(change),

6 Zhi Li et al.

 POS CUST REQ
CU! a

PO! b

{present(item)}

a: {present(item), present(payment)}
b: {present(notice)}, {present(change)}, {present(receipt)}

{present(receipt)}

Fig. 3. Point-of-sale: problem diagram

 POS
 POS=?
The software specifications to be calculated.

CUST is a customer who wants to buy an item from the shop.
(1). He presents the item he wants (whose price is i pence, ranging from 1 to 100) to the POS via
the bar code scanner.
(2). after receiving a notice n from the POS, he presents, perhaps, part payment in cash p pence,
a coin of value 1p, 2p, 5p or 10p to the POS (e.g., through a cash acceptor).
(3). If the payment is sufficient, i.e., i ≤ p, then the customer will be given the change c (e.g., via
the dispenser handler), followed by a receipt for r = i as a proof of purchase (e.g., a printout from
the receipt printer);
(4). if the payment is insufficient, i.e., p < i , then further notices displaying the remaining amount
of payment are issued to the customer until sufficient payment is presented, after which the
customer will be given the change and a receipt.
(5). i,n,p,c,r are assumed to be in natural numbers, i.e., i,n,p,c,r ∈ N, and the above payment
method is in cash for a single item, and that i, n, p, c, r are expressed in pence in British money.

 CUST

DescriptionName

10 Zhi Li1, Jon G. Hall2, and Lucia Rapanotti2

predicates to be able to apply the definition of Lai’s quotient operator to construct the
solution specification; we need process expressions to communicate intuitions about
relative orderings of occurrences of events and associated values communicated, and for
validating the derived specification against requirements using FDR, which has direct
support for process expressions in CSP.

The following are the informal domain and requirement descriptions and their for-
malisation (with justifications):

The Customer Domain CUST :
Informally, a customer is a person who wants to buy an item from the shop. First of

all, he presents the item he wants (whose price is i pence , with i a number between 1
and 100) to the self-checkout POS system (e.g., through the bar code scanner). Then, af-
ter receiving a notice n from the system (e.g., via a screen display showing the payment
needed), he presents, perhaps, part payment in cash p pence , a coin of value 1p, 2p, 5p
or 10p to the system (e.g., through a cash acceptor). If the presented payment is suffi-
cient, i.e., i ≤ p, then the customer will be given the change c (e.g., via the dispenser
handler), followed by a receipt for r = i as a proof of purchase (e.g., a printout from the
receipt printer); if the presented payment is insufficient, i.e., p < i , then further notices
displaying the remaining amount of payment are issued to the customer until sufficient
payment is presented, after which the customer will be given the change and a receipt.
Note that i ,n, p, c, r are assumed to be in natural numbers, i.e., i ,n, p, c, r ∈ N. In
this example, we assume that the above payment method is in cash for a single item,
and that i ,n, p, c, r are expressed in pence in British money.

In this example, for brevity of presentation, we use item , notice, pay , change , and
receipt as a short form of events present(item), present(notice), present(payment),
present(change), and present(receipt) in Figure 1, respectively.

From the descriptions above, we model the behaviour of a customer using the fol-
lowing formula:

CUST =
�

i∈{1,...,100} item!i → notice?i → PAY , where
PAY =

�
p∈{1,2,5,10} pay !p → (change?c → receipt?i → STOPαCUST

� notice? n → PAY).

In the above formula, item,notice, pay , change, receipt denote the names of com-
munication channels of process CUST , all of which are synchronised with its envi-
ronment process POS . Within this context, i ,n, p, c, r denote the values being passed
through these channels. The symbol ! means the value is output by process CUST onto
its communication channel, and ? means a certain value is received by process CUST
from its communication channel. For brevity, we sometimes refer to an event by its
channel name only, when unambigous.

Eventually process CUST ends with STOPαCUST , where
αCUST = {item,notice, pay , change, receipt},

which indicates that his engagement in the above events is terminated.
The justifications for the above formalisation are:

– The customer is a biddable domain in PF, whose behaviour is modelled through
the indexed internal choice operator1 �

i∈{1,...,100}, where the value of the item i

1 In this thesis, biddable behaviour is modelled by internal choice.Table 1. Domains and their descriptions

and present(receipt) in Figure 3, respectively. These events are also the shared phe-
nomena between domains in Figure 3, whose designations are explained in natural lan-
guage in Table 2 .

The requirement is informally described as: “customers should pay for and receive
a receipt for the correct amount on presentation of items to the POS system”. According
to this statement, requirement REQ only constrains two events: whenever event item.i
happens, eventually event receipt .r should happen, and the value of r should be equal
to that of i , i.e., r = i . Therefore,

REQ =
d

i∈{1,...,100} item.i → receipt .i → STOP{item,receipt}.
Note we use item.i and receipt .i to represent that both CUST and POS partic-

ipate in this event: from CUST ’s perspective, the event should be denoted as item!i ,
and from POS ’s perspective, the same event should be denoted as item?i , therefore
expression receipt .i includes both perspectives of CUST and POS .

The above process expression is not detailed enough for us to construct POS be-
cause it does not prescribe all of the interaction behaviours between CUST and POS ,
i. e., events notice , pay and change do not appear in REQ’s alphabet. For the problem
diagram in Figure 3 we need to find a process POS such that

On the construction of specifications from requirements 7

 present(receipt) The event in which the POS system presents a receipt to the customer. This event is initiated
and controlled by the POS domain, thus represented by PO! that proceeds it.

The event in which the POS system presents the change due to the customer. This event is
initiated and controlled by the POS domain, thus represented by PO! that proceeds it. present(change)

 present(notice) The event in which the POS system presents a notice to the customer. This event is initiated
and controlled by the POS domain, thus represented by PO! that proceeds it.

The event in which the customer presents the payment for the purchased item to the POS
system. This event is initiated and controlled by the customer CUST domain, thus
represented by CU! that proceeds it.

 present(payment)

The event in which the customer presents an item of product s(he) wants to buy to the POS
system. This event is initiated and controlled by the customer CUST domain, thus
represented by CU! that proceeds it.

 present(item)

DesignationName

Table 2. Shared phenomena and their designations

(POS ||CUST) \[{item,notice, pay , change, receipt}\{item, receipt}] sat REQ ,
and the solution set for the problem diagram is:

{notice, change, receipt}, {item, pay} : [CUST ,REQ]
= {POS : Specification|POS ! = {notice, change, receipt} ∧ POS? = {item, pay}
∧ (POS || CUST) \ {notice, pay , change} sat REQ}.

Notice that the problem is to find a POS to satify the above formula. However, Lai’s
quotient can not directly allow us to calculate POS . As do Lai and Sanders [11], we
therefore introduce the above missing events into a more detailed requirement statement
which we call REQC .

We construct REQC in a way that relates to CUST ’s behaviour, meanwhile still
satisfying REQ after hiding events notice , pay and change . Based on our work in [5],
we can now construct REQC 8:

REQC =
d

i∈{1,...,100} item.i → notice.i → REQCPAY (i , i), where
REQCPAY (i , remain) =d

p∈{1,2,5,10} pay .p →
if p < remain
then (notice.(remain − p)→ REQCPAY (i , remain − p))
else (change.(p − remain)
→ receipt .i → STOPαREQC)

Applying the hiding operator \ to REQC , we get

REQC \ {notice, pay , change}
= (

d
i∈{1,...,100} item.i → notice.i → REQCPAY (i , i)) \ {notice, pay , change}

=
d

i∈{1,...,100} item.i → (REQCPAY (i , i) \ {notice, pay , change})
=

d
i∈{1,...,100} item.i → receipt .i → STOP{item,receipt}

sat REQ .

8 REQC is constructed from an abstract REQCA, see pages 79-82 in [5] (URL:
http://www.scm.keele.ac.uk/staff/z li/PhD Thesis.pdf)for details

8 Zhi Li et al.

Thus, if POS is such that
(POS || CUST) sat REQC ,
then
(POS ||CUST)\{notice, pay , change} sat REQC\{notice, pay , change} sat REQ .
From the properties of Lai’s quotient, any POS sat CUST \\REQC will solve the

problem, though in general Lai’s quotient may not always lead to a process [11].

4.1 Solving the Problem Using Lai’s Quotient

In this problem, CUST and POS synchronise on all their communication channels,
namely, item,notice, pay , change, receipt . Recall that in Lai’s definition of the quo-
tient, set A is the alphabet of chosen communication channels between the two sub-
processes X and P . Therefore, CUST \\REQC ’s alphabet should be calculated as
(αREQC \ αCUST) ∪ A. We choose the entire alphabet of CUST as the set A be-
cause it is assumed that all of CUST ’s alphabet are synchronised communications with
POS , and is constrained or referred to by REQC . In our model, we ignore any other
irrelevant behaviours of CUST in this formal analysis. Therefore,

A = {item,notice, pay , change, receipt}
αREQC = {item,notice, pay , change, receipt},
αCUST = {item,notice, pay , change, receipt},
α(CUST \\REQC) = (αREQC \ αCUST) ∪ A

= {item,notice, pay , change, receipt}.
We will solve the problem by constructing:
POS = (CUST \\REQC).
The predicate expressions for CUST and REQC , as needed in Lai’s quotient, are

derived according to the predicative semantics introduced by Lai and Sanders [11]. For
ease of presentation, we express their predicate expressions in tabular forms, as shown
below.

Predicates on CUST ’s tr and accept (its meaning is given below) expressed in a
tabular form:

trace length l 0 1 2 3 4 ... 2n + 1 2n + 2 2n + 3

l th element of tr 〈〉 i .i n.i p.p1 n.(i − p1) ... p.pn c.(Σn
x=1px − i) r .i

accept {i} {n} {p} {c,n} ... {p} {c,n} {r} {}

Predicates on REQC ’s tr and accept expressed in a tabular form:

trace length l 0 1 2 3 4 ... 2n + 1 2n + 2 2n + 3

l th element of tr 〈〉 i .i n.i p.p1 n.(i − p1) ... p.pn c.(Σn
x=1px − i) r .i

accept {i} {n} {p} {n}, {c} ... {p} {n}, {c} {r} {}

In the above tables, we have abbreviated events to their first letters, and shown all
possible behaviours of CUST and REQC that are associated with an item that costs
i . An item of cost i will lead to a trace of no longer than 2i + 3 events: each time the
customer pays, it must be with a coin of value greater than 1 pence, so that the amount
remaining is at most one less. As i is finite, all traces of the system are finite.

The first row of the table shows a trace of length l (0 ≤ l ≤ 2n + 3). In the
second row of the table we give the events of the trace; in the third row, we indicate the

On the construction of specifications from requirements 9

refusal set after that trace. We name this set accept to represent those entries that the
process cannot refuse. For example, in the first table, the entry for l = 3 is p.p1, {c,n},
indicating that the failure is (〈i .i ,n.i , p.p1〉, αCUST \ {c,n}). 9

We can check that the representation of the table interpreted in this way provide the
predicative semantics for the represented terms.

In CUST ’s table, from
CUST =

d
i∈{1,...,100} item!i → notice?i → PAY , where

PAY =
d

p∈{1,2,5,10} pay !p → (change?c → receipt?i → STOPαCUST

� notice? n → PAY).
we give the following explanations of two representative entries in the table:

– When the trace length is 0, which means tr = 〈〉, then according to the semantics
of event prefix in section 4, item.i can not be refused, item.i /∈ ref ⇔ ref ⊆
αCUST \ {item.i}, that is, accept = {i}; also according to the semantics, the
next event in tr must be the head of CUST which is item.i whose shorthand is i .i
in the table;

– CUST ’s refusal set after the trace 〈i .i ,n.i , p.p1〉 is derived according to the se-
mantics of external choice in section 4, as follows:
before (change?c → receipt?i → STOPαCUST � notice? n → PAY) is exe-
cuted, that is, its trace is empty, its behaviour is defined to be
(change?c → receipt?i → STOPαCUST)(tr , ref)∧ (notice? n → PAY)(tr , ref),
again, according to the semantics of event prefix, change.c /∈ ref ∧notice.n /∈ ref
holds, which means ref ⊆ αCUST \ {change,notice}, which explains the entry
accept = {c,n} (notice the shorthand) in CUST ’s table.

The rest of the entry can be similarly derived accordingly.
Different from CUST , the choice is internal after the trace 〈i .i ,n.i , p.p1〉, i.e.,
(change?c → receipt?i → STOPαREQC u notice? n → REQCPAY)
REQC ’s refusal set after the trace 〈i .i ,n.i , p.p1〉 is derived according to the se-

mantics of internal choice, as follows:
the above internal choice’s behaviour is defined to be

(change?c → receipt?i → STOPαREQC)(tr , ref)∨(notice? n → REQCPAY)(tr , ref)

according to the semantics of event prefix, change.c /∈ ref ∨ notice.n /∈ ref
holds, which means ref ⊆ αCUST \ {change}, {notice}, which explains the entry
accept = {c}, {n} in REQC ’s table. Note that we use “,” to represent “exclusive or”,
which means that REQC can refuse either c or n , but not both.

Lai’s quotient is defined as:

CUST \\REQC (tr , ref) =
∀ur : traces(REQC) ∀ rep ⊆ αCUST • [tr = ur � α (CUST \\REQC)
∧ CUST (ur � αCUST , rep) ⇒ REQC (ur , rep ∪ ref)]

(since αREQC = αCUST = α(CUST \\REQC), thus tr = ur)
⇔ ∀rep ⊆ αCUST • [CUST (tr , rep)⇒ REQC (tr , rep ∪ ref)]

9 We use accept to stand for the intuitive meaning of acceptance, rather than a strictly formal
meaning of acceptance, as in [12].

10 Zhi Li et al.

From the above step of derivation based on Lai’s quotient definition, we know that
tr = ur , which means POS = CUST \\REQC ’s trace tr is always equal to that
of REQC , due to the fact that αREQC = αCUST = α(CUST \\REQC) holds.
Therefore, all the entries of trace events in POS ’s table is exactly the same as those in
CUST ’s table.

Next, let us look at the accept entries in POS ’s tables. We derive some represen-
tative accept entries in POS ’s table from the given entries in CUST and REQC ’s
tables.

In the first trace event, given that CUST (〈〉, {n, p, c, r}) and REQC (〈〉, {n, p, c, r})
are true (it is a fact, as shown in the tables),

CUST \\REQC (〈〉, ref)
= ∀rep ⊆ {i ,n, p, c, r} • [CUST (〈〉, rep)⇒ REQC (〈〉, rep ∪ ref)]

That rep = {i} contradicts with the fact CUST (〈〉, {n, p, c, r}) holds. When
rep ⊆ {n, p, c, r}, we know for a fact that the antecedent is always true , and in order
to make the consequent true so that the entire predicate holds, {n, p, c, r} ∪ ref =
{n, p, c, r} must hold, therefore we can derive that ref ⊆ {n, p, c, r}, which means
ref ⊆ αPOS \ {i}, which allows us to derive the accept entry in POS ’s table as {i}.

The derivations of the other entries in POS ’s table are similar (see [5] for details).
The constructed table shows POS ’s behaviour in terms of tr and accept :

trace length l 0 1 2 3 4 ... 2n + 1 2n + 2 2n + 3

l th element of tr 〈〉 i .i n.i p.p1 n.(i − p1) ... p.pn c.(Σn
x=1px − i) r .i

accept {i} {n} {p} {n}, {c} ... {p} {n}, {c} {r} {}

Note that entries in POS ’s table correspond to REQC ’s entries, which leads us to
derive POS ’s expression in a process form based on the correspondence, as follows:

POS =
d

i∈{1,...,100} item?i → notice!i → POSPAY (i , i), where
POSPAY (i , remain) =d

p∈{1,2,5,10} pay?p → if p < remain then (notice!(remain − p)

→ POSPAY (i , remain − p)) else (change!(p − remain)
→ receipt !i → STOPαPOS)

Note that POSPAY involves the communication of at least two values, value i for
the first receipt event, and a variable value remain for later notice event representing
the remaining amount of payment needed; the choice is chosen by a conditional: if
the payment remain ≤ p, then a change and a receipt will be given out by POS ; if
p < remain then a notice for the need of further payment will be given by POS . These
elaborated details can be implemented quite easily in a programming language as a
function with two parameters, which will be shown in our FDR script later.

With this derivation of POS , we have solved the problem constructively.

5 Related Work

Few authors have considered the formal transformation of requirements into specifica-
tions.

On the construction of specifications from requirements 11

Seater et al. [13] have done some related work on deriving specifications from re-
quirements in the context of Problem Frames, in which the requirement is transformed
into a specification, and, as a by-product of the transformation, a record of domain
assumptions, which they call ‘breadcrumbs’, are produced as justification for the pro-
gression: domain assumptions are added manually by the expert analyst. The focus of
their transformation is on rephrasing the requirement progressively until it is expressed
as a machine specification, while manually adding domain assumptions which make the
requirement transformation sound. Their work is based on Alloy [14], a first-order logic
modelling language, which is used to express requirements and domain assumptions,
and to check the soundness of their requirements transformations. In contrast, our ap-
proach systematically progresses whole problems which are expressed in CSP through
application of the Lai’s Quotient operator, and solely relying on its logical deductions
and proofs of equivalence.

Within goal-oriented approaches to RE, [15] propose a way to derive software spec-
ifications from high-level goal-based requirements models expressed in real-time linear
temporal logic; the approach defines formal rules for mapping real-time temporal logic
specifications to sets of pre, post and trigger conditions of functional specifications, with
the application of the rules guided by a catalogue of goal specification patterns. This
work share a similar objective as our work, but is located in a different RE paradigm.

6 Conclusions and Future Work

We have proposed a problem-based approach for the systematic transformation of re-
quirements into specifications, through a CSP encoding of problem diagrams and the
application of the Lai’s Quotient operator, and we have demonstrated its feasibility
through its successful application to a small example, where the problem transforma-
tion process is supported by constructing proofs of correctness, with CSP expressions
of problem diagrams as its inputs and the derived CSP trace expressions of the machine
specifications as its outputs. The technique has been found useful for underpinning
requirements analysis in software engineering [16]. For bigger case studies, we have
successfully underpinned problem transformation with causal domain knowledge and
an associated set of transformation rules [5]. Similarly, once domain knowledge about
causal relationships are augmented and formalised as premises of our proofs, the Quo-
tient operator can still be applied to bigger case studies.

The main problem with the approach is the difficulty of having requirements ex-
pressed in CSP in the first place, since the de facto language used in describing re-
quirements is natural language. Hence, future work will investigate the boundary of its
applicability, and any preliminary work needed before applying our technique.

On the other hand, a main virtue of the approach is that, once such a CSP problem
model is established and causal relationships are formally represented, problem pro-
gression is the outcome of applying Lai’s Quotient operator, making automation of the
transformation viable without human actors’ intervention. Future work will aim at pro-
viding such automation, which may be useful for solving problems for critical systems
for which unambiguous specifications and strong validation are mandatory.

12 Zhi Li et al.

References

1. Jackson, M.: The world and the machine (keynote). In: 17th Int. Conf. on Software Engi-
neering (ICSE’95), Seatle, USA, IEEE/ACM (April 1995) 282–292

2. Jackson, M.: Problem Frames: Analyzing and Structuring Software Development Problems.
Addison-Wesley Publishing Company (2001)

3. Hall, J.G., Rapanotti, L., Jackson, M.: Problem frame semantics for software development.
Software and Systems Modeling 4(2) (May 2005) 189–198

4. Rapanotti, L., Hall, J.G., Li, Z.: Deriving specifications from requirements through problem
reduction. IEE Proceedings - Software 153(5) (October 2006) 183–198

5. Li, Z.: Progressing problems from requirements to specifications in problem frames. Phd
thesis, Department of Computing, The Open University, Walton Hall, Milton Keynes, UK
(September 2007)

6. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Transactions
on Software Engineering and Methodology 6(1) (January 1997) 1–30

7. Hall, J.G., Rapanotti, L.: Assurance-driven design in problem oriented engineering. Interna-
tional Journal On Advances in Systems and Measurements 2(1) (2009) 119–130

8. Hall, J.G., Rapanotti, L., Jackson, M.: Problem oriented software engineering: A design-
theoretic framework for software engineering. In: Proceedings of 5th IEEE International
Conference on Software Engineering and Formal Methods, IEEE Computer Society Press
(2007) 15–24 doi:10.1109/SEFM.2007.29.

9. Hall, J.G., Rapanotti, L., Jackson, M.: Problem-oriented software engineering:
solving the package router control problem. IEEE Trans. Software Eng. (2008)
doi:10.1109/TSE.2007.70769.

10. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International (1985)
11. Lai, L., Sanders, J.W.: A weakest-environment calculus for communicating processes. Re-

search report PRG-TR-12-95, Programming Research Group, Oxford University Computing
Laboratory (03-1995 1995)

12. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall (1997)
13. Seater, R., Jackson, D., Gheyi, R.: Requirement progression in problem frames: Deriving

specifications from requirements. Requirements Engineering Journal (REJ’07) 12(2) (April
2007) 77–102

14. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge,
MA, USA (April 2006)

15. Letier, E., van Lamsweerde, A.: Deriving operational software specifications from system
goals. In: SIGSOFT 2002/FSE-10, Charleston, SC, USA (November 2002)

16. Li, Z., Hall, J.G., Rapanotti, L.: Modeling domain knowledge in support of requirements
analysis in software engineering. In: International Conference on Power and Energy Systems
(ICPES2010), IEEE (2010)

