
A Tool for Formal Feature Modeling Based on
BDDs and Product Families Algebra

Fadil Alturki and Ridha Khedri
Department of Computing and Software

McMaster University
Hamilton, Ontario, Canada L8S 4K1
Email: turkifs, khedri@mcmaster.ca

Abstract—Feature models are commonly used to capture the
commonality and the variability of product families. There are
several feature model notations that correspondingly depict the
concepts of feature modeling techniques. Therefore, the tools
based on them reflect this diversity in the notations used and
the fuzziness of the concepts adopted.

We propose a tool based on Product Families Algebra (PFA)
and on Binary Decision Diagrams (BDD). The first brings the
mathematical formalism to the specifications of product families
and the mathematical theory that enables calculations on feature-
models. The second brings efficient algorithms in time and in
space. Hence, the tool allows several algebraic manipulations of
feature models algebraically specified.

The paper discusses the architecture of the tool, and the
process through which a term in PFA is translated into a
term formed by BDD symbols and operations. A case study is
presented to illustrate the tool’s key functionalities.

I. INTRODUCTION

In a product family, products share a group of features
called commonality, but they are extended by other features
called variability. Feature Modeling [1] emerged as a means
to capture the commonality and the variability of the members
of product families. In Feature Modeling, products are formed
by aggregating features, which are, intuitively, taken as atomic
characteristics or artefacts of a system. The relationships
between the features in a product family are usually captured
in graphs called feature models. The feature modeling step
is usually an intermediate step between the requirements and
the implementation of software product lines and component-
based systems. It involves finding out prominent and distinc-
tive user visible characteristics - referred to as features - of a
system as well as their structural relationships.

There are several feature modeling notations that corre-
spondingly depict the definitions and concepts of feature
modeling techniques. Some of these are FODA [1], FORM [2],
FeatuRSEB [3], Generative Programming [4], and PLUSS [5].
It is reported in [6] that the above feature modeling techniques
are mostly extensions of the first technique FODA. Figure 1
illustrates the evolution of feature modeling techniques starting
from FODA.

Some of the feature modeling techniques are widely used
and investigated by researchers, and several tools have been

This research is supported by Natural Sciences and Engineering Research
Council of Canada (NSERC) through the project 2009R00030.

Fig. 1. Extension Hierarchy of Feature Modeling Techniques

developed to support them. According to the evaluation of the
feature modeling tools discussed in the survey presented in [7],
the most prominent feature modeling tools are: RequiLine,
Pure::Variants, XFeature, and DOORS TREK. The survey [7]
points also to other tools such as AmmiEddi, Captain Feature,
DecisionKing, Feature Plugin, FMP, FORM/ASADAL, Gears,
SSEP Toolset, and VarMod. According to [7], none of the tools
reviewed implement the classical feature modeling concepts
except for XFeature and some tools implement other concepts
such as the separation between feature models and family
models as for Pure::Variants and Requiline. Even though they
share some common background, they do not produce the
same feature models.

We have found other tools in the literature that provide some
support for feature modeling. The tool 001 [8] is essentially
an integrated family of utilities used for rapid development
of systems. One of its utilities supports feature modeling.
The feature model in 001 is based on FODA and uses a
representation called 001 TMap with more capabilities to
capture information and enhance the FODA technique [8].

Each of these tools support a specific feature modeling
technique and is limited to its specific notation. It cannot
allow specifiers to overcome the limitations of one technique
by adopting another technique without switching to the cor-
responding tools of the latter. In addition to the differences
in the semantics of the feature models adopted, there is no
standard language via which these tools can exchange feature
models. All the tools are based on informal understanding
of the notions of products, and families. The lack of formal
definitions of concepts such as “family”, and “product” as

well as the relationship between features and products lead
to ambiguities and to conflicting terminology. We find in the
work on product families algebra [9]–[11] the mathematical
background for proposing a tool that uses the language of this
algebra as a common language for several feature modeling
techniques. A feature model produced by a modeling technique
can be translated (syntax-based translation) into terms of the
language of the algebra. On the obtained terms, one can
perform mathematical transformations such as simplification,
factorisation, combination with, or comparison to other terms.
The terms can also be translated into other feature models
that use a different graphical notation from the original. For
instance, a FODA feature model can be translated into an
algebraic term, then it can be displayed as a PLUSS feature
model.

We would like to stress the fact that once a feature model
is expressed with terms within the language of PFA, it can
then be subject to algebraic manipulations. In other words,
we can do calculus on models, because calculus is algebra
(for the relationship between calculus and algebra, we refer
the reader to [12]). Therefore, the proposed tool would help
in doing calculus on feature models through their translation
into terms of the product families algebra that we introduce
in Section II-A.

The graphical feature modeling techniques presented above
do not facilitate any calculational means. It would be hard
for users to do any kind of predictions, or inquiries. There
is no direct way to get, for example, a list of fault products,
or products that are mutually exclusive. These techniques do
not allow to calculate the number of unique products possible
with certain constraints. To do so, an exhaustive traversal of
graphs has to be done without any sort of formalism.

One more problem comes with one of the major benefits
of feature models. As much the visualization is beneficial, it
could be an obstacle when we handle large systems. The com-
plete picture is incomprehensible even though there are some
techniques to zoom in and navigate the graph or represent the
feature model as a tree that is collapsible and expandable.

A. Main Contribution

The presented work proposes a tool that we coined Jory,
which bases the automation of feature modeling activities on
Product Families Algebra and on Binary Decision Diagrams.
The first brings the mathematical formalism to the specifica-
tions of product families as well as the mathematical theory
that enables calculations on feature-models. The second brings
efficient algorithms in time and in space, which allow the
handling of feature models involving large number of features.
To provide automated support to users engaged in feature-
modeling, the tool architecture contains an architectural layer
capable of translating between feature models of different
notations. Moreover, the tool allows several algebraic ma-
nipulations of feature models presented as algebraic terms.
A feature model can be, for instance, simplified, factorised,
and mathematically analysed. Also, feature models can be
combined, linked, extracted and enumerated. We conjecture

that this should provide more functionality that can be applied
to feature models and can extend their benefits. Instead of
being ”yet another tool”, the proposed tool provides in addition
to its algebraic flavour an environment that recognises other
feature modeling notations and allows them to exchange
models through translation. The translation is done through
an algebraic setting that has a wide literature and can inherit
a wealth of theories from classic algebra.

B. Organisation of the paper

We start by laying the theoretical background on which the
construction of the proposed tool stands. We briefly introduce
PFA and BDDs. We also give two models of PFA that
the tool use in validating formulas within the language of
PFA. In Section III, we give the highlights of Jory’s design
and describe the functionalities of its architectural layers. We
put more emphasis on explaining the mathematics behind
the detailed design of the Term Evaluation Layer and the
BDD Layer. In Section IV, we present and discuss a simple
case study to illustrate the use of the tool and its main
functionalities. In Section V, we conclude and point to further
extensions and improvements to the tool.

II. MATHEMATICAL BACKGROUND

The tool that we present in this paper is based on two
mathematical paradigms: product families algebra (PFA) and
binary decision diagrams (BDDs). The language of the first
is used to specify product families and its theory enables
calculations on product families. BDDs are for the purpose of
the implementation of two specific models for product families
algebra: the set model and the bag (multiset) model. We briefly
introduce PFA and BDDs in the rest of this section.

A. A Brief Overview of Product Families Algebra

The adoption of product families aims at recognising a real-
ity in software development industry noticed decades ago [13]:
economical constraints impose a concurrent approach to soft-
ware development replacing the early sequential one. A review
of the literature reveals a wide set of notions and terms used
without formal definitions. Terms like product, family and
subfamily lack rigourous definitions. In [9], [14], we find the
algebraic definitions for these terms that we adopt for the
rest of this paper. Also, within specific models (such as set-
based model and bag-based model), the above papers provide
the corresponding definitions of these notions in terms of
these particular models. The work presented in [9]–[11] shows
through several examples, the simplicity with which product
families algebra can contribute towards the establishment of a
solid mathematical background for a formal product families
specification. It is based on a classical mathematical structure,
which is the idempotent commutative semiring. Therefore, it
inherits all the mathematical theory of idempotent semirings
and provides us with a calculational power that can be applied
to feature models. It also inherits the mathematical properties
of sets and bags when we use their corresponding models for
our algebra.

Definition 2.1: A semiring is a quintuple F = (S, +, 0, ·, 1)
such that (S, +, 0) is a commutative monoid and (S, ·, 1) is a
monoid such that · distributes over + and 0 is an annihilator,
i.e., 0 · a = 0 = a · 0. The semiring is commutative if · is
commutative and it is idempotent if + is idempotent, i.e., a+
a = a. In the latter case the relation a ≤ b

def⇐⇒ a + b = b
is a partial order, i.e., a reflexive, antisymmetric and transitive
relation, called the natural order on S. It has 0 as its least
element. Moreover, + and · are isotone with respect to ≤.

In the context of software family specification, + can
be interpreted as a choice between options of products and
features, and · as their composition or mandatory presence.
In [9]–[11], [14], an idempotent commutative semiring is
called a product families algebra or a feature algebra. Its
elements are termed product families and can be considered
abstractly as representing sets of products, each of which is
composed of a number of features.

Definition 2.2: A product family algebra (PFA) is an idem-
potent and commutative semiring. Its elements are called
product families or briefly families. A family g is a subfamily
of family f iff g ≤ f , where ≤ is the natural semiring order.

The language of PFA is used for feature modeling. A special
family is 1 = {∅} consisting just of the empty product that has
no features. The term 1 + a denotes a family which consists
of all products of a and the empty product; it expresses
optionality of a.

As a simple example we assume a company which produces
computers. It builds machines with a hard disk and a screen.
Moreover, clients might request a second screen, a printer
or a scanner. Of course, it is possible to have more than
one extension for the basic computer. Using the abbreviations
hd, scr, prn, and scn, this yields the following product family
in PFA:

hw = hd · scr · (1 + scn) · (1 + prn) · (1 + scr)

Note that according to this general definition, the members
of a product family need not have common features. In [9]–
[11], a product family that share a common feature f is called
f -carrying family. In [9]–[11], two models for the Product
Families algebra are explicitly given: the set-based model and
the bag-based model. We also note that Boolean algebras and
lattices can also be models for the product families algebra.
The proposed tool implements the set-based model and the
bag-based model. In the following, we briefly present them as
given in [9]–[11].

1) The Set-based Model: Let IF be a set of arbitrary
elements or the so-called features. Often, features can be seen
as basic properties of products. The set of all possible products
is denoted by IP def= P(IF). A collection (set) of features is
a product. A collection of products (an element of P(IP))
is called product family. On product families we define an
operation · which is a composition or a merging operator for
all features:

· : P(IP)× P(IP) → P(IP)
P ·Q = {p ∪ q : p ∈ P, q ∈ Q} .

The second operation + offers a choice between products of
different product families:

+ : P(IP)× P(IP) → P(IP)
P + Q = P ∪Q.

It is straight forward to see that the structure
(IP,+, ∅, ·, {∅}) is a model for the product families algebra,
where · and + are the operation defined on sets as given
above.

2) The Bag-based Model: The set-based model does not
allow multiple occurrences of the same feature in a product.
For example, the above hw family cannot be fully captured
within a set-based model because we need products with two
occurrences of the feature scr. If the number of occurrences
of a feature can be higher than 1, one can use an analogous
model that employs multisets (also called bags) of features.

In a similar way to set-based model, on product families
we define an operation · which is a composition or a merging
operator for all features:

· : P(IP)× P(IP) → P(IP)
P ·Q = {p t q : p ∈ P, q ∈ Q}

where t denotes bag union that takes into account the number
of occurrences of an element of a bag. The second operation
+ is the same as that defined for the set-model.

3) Further Notions: For the mathematical background of
the rest of the paper, we need to recall other notions already
presented in [9]–[11].

Definition 2.3: An element a is said to be a product, if
a 6= 0 and

∀(b |: b ≤ a =⇒ b = 0 ∨ b = a)
∧ ∀(b, c |: a ≤ b + c =⇒ (a ≤ b ∨ a ≤ c)) .

(1)

We say that a is a proper product if a 6= 0.
Intuitively, this means that a product cannot be divided using
the choice operator +. Or in other terms, it does not offer
optional or alternative features.

In this case, a is also a product if a = 1.
Analogously to Definition 2.3, indivisibility is required, but

this time w.r.t. multiplication rather than addition.
Definition 2.4: An element a is called feature if it is a

proper product and it is different from 1 and

∀(b |: b | a =⇒ b = 0 ∨ b = a)
∧ ∀(b, c |: a | (b · c) =⇒ (a | b ∨ a | c)) ,

(2)

where the divisibility relation | is given by x | y def⇐⇒
∃(z |: x = y · z).

On every product families algebra, we can define a relation
that expresses that one product family refines another in a
certain sense.

Definition 2.5: [[9], [14]] The refinement relation v on a
product families algebra is defined as

a v b
def⇐⇒ ∃(c | c ∈ S : a ≤ b · c) ,

where ≤ is the natural order on S.

Roughly speaking, a v b means that every product in a has
at least all the features of some product in b, but possibly
additional ones. For example, in the above hw family, the
product given by the term hd · scr · scn · prn refines the
product given by the term hd · scr · prn, since the first has
scn in addition to all the features of the second.

We write a
p→ b to denote that a requires b in the family p.

Definition 2.6: [[10], [11]] Assume a feature-generated
algebra. For elements a, b, c, d and product p we define, in
a family-induction style,

a
p→ b

def⇔ (p v a ⇒ p v b) ,

a
c+d→ b

def⇔ a
c→ b ∧ a

d→ b .

In [10], [11], the reader finds the mathematical properties
of this operator.

For further discussions on these notions, we refer the reader
to [9]–[11] from where the above definitions are adapted.
In the latter references, the reader can find as well more
properties of the product families algebra concerning finding
common features, building up product families, finding new
products and excluding special feature combinations.

To give the reader an idea about the expressiveness of the
language of the product families algebra, we provide in Ta-
ble I the algebraic term(s) that correspond(s) to the primitive
expressions used in FODA, FORM, FOPLE, FeatuRSEB, GP,
van Gurp, Reibisch, and PLUSS. For example in Table I, the
forth row, is the expression of a product a that is composed
of b, c and d. The expression is given in the various feature
models as well as in PFA.

B. Binary Decision Diagrams

A Binary Decision Diagram (BDD) is a finite directed
acyclic graph with a unique initial node, where all terminal
nodes are labelled with 0 or 1 and all non-terminal nodes
are labelled with a node names. Each non-terminal node has
exactly two edges: one labelled false and one labelled true and
represented as a dashed line and a solid line, respectively. For
more details on BDDs, we refer the reader to [15, Chapter
6], [16]–[19]. Binary Decision Diagrams were first used in
digital circuits before they are adapted in Model Checking and
many other applications. BDDs are used to represent boolean
functions.

If we take the boolean function f(x, y, z) = x · y ∨ z
defined on the Boolean variables x, y, and z, then the BDD that
represents f is given in Figure 2. We use ·,∨, and to
denote respectively the Boolean operators and, or, and the
complement, respectively. When a boolean function evaluates
to true, then its corresponding combination of nodes on a path
starting from the root ends in a true terminal node. In this case,
we say that the boolean function is satisfied. We are using
Reduced Ordered Binary Decision Diagrams, where nodes are
ordered and any sort of duplication is removed.

Fig. 2. The BDD representing the Boolean function f(x, y, z) = x · y ∨ z

III. TOOL DESIGN

A. Architecture Design

In designing the proposed tool, that we coined Jory, we
opted for a layered architecture. This architectural style is
suitable for our need for the following reasons:

• It enables incremental development of the tool based
on increased levels of abstractions. For instance, each
layer in our system (other than the user interface layer)
corresponds to a level of abstraction.

• It enhances independence among layers: no impact from
the changes of lower services as long as their interface
to the other layers is preserved.

• It is suitable for plug-and-play of new components. In-
deed, we intend to make use of other models for features
other than BDDs to enable feature interaction problems.
Several feature interaction detection tools such as [20]
have been developed and we intend to enable our tool to
seek some of their services.

B. Main Tool functionalities

The main services provided by the tool are related to
feature models transformations, PFA calculation and rewriting,
merging, translation into PFA algebraic specification, or to
several other graphical feature models. Each layer of the tool
(see Figure 3) specialises in a set of related activities. We
discuss the architectural layers in the remaining of this section.
We put more emphasis on Term Evaluation Layer and on
BDD Layer. These two layer are special due to mathematics
involved in their design. The other layers are either simple
switching system (e.g., Concrete Models Layer), or involve
direct syntactical translation (e.g., Translation Layer).

1) User Interface Layer: The User Interface Layer supports
the display and the input of graphical and textual feature
models. In Section IV, the reader finds several figures showing
the user interface. Its design is simple and straightforward.

TA
B

L
E

I
F

E
A

T
U

R
E

M
O

D
E

L
L

IN
G

N
O

TA
T

IO
N

S
A

N
D

T
H

E
C

O
R

R
E

S
P

O
N

D
IN

G
A

L
G

E
B

R
A

IC
T

E
R

M
S

E
xp

re
ss

io
n

FO
D

A
FO

R
M

FO
PL

E
Fe

at
uR

SE
B

G
P

va
n

G
ur

p
R

ei
bi

sc
h

PL
U

SS
Pr

od
uc

t
Fa

m
ili

es
A

lg
eb

ra
Te

rm

Fe
at

ur
e

a

M
an

da
to

ry
,a

nd
m

ul
ti-

pl
ic

iti
es

L
et

p
be

a
fa

m
ily

,p
=

a

O
pt

io
na

l
,

&
m

ul
ti-

pl
ic

iti
es

L
et

p
be

a
fa

m
ily

,
p

=
a

+
1

A
N

D
-

C
om

po
se

d-
of

U
M

L
M

ul
ti-

pl
ic

iti
es

a
=

b
·c
·d

X
O

R
-A

lte
r-

na
tiv

e
U

M
L

M
ul

ti-
pl

ic
iti

es
a

=
b
+

c
+

d

O
R

-
C

ho
ic

e
no

t
su

pp
or

te
d

no
t

su
pp

or
te

d
no

t
su

pp
or

te
d

U
M

L
M

ul
ti-

pl
ic

iti
es

a
=

(1
+

b)
·

(1
+

c)
·(

1
+

d
)∧

¬(
a

6
1)

R
eq

ui
re

s
te

xt
ua

l
te

xt
ua

l
te

xt
ua

l
te

xt
ua

l
L

et
p

be
a

fa
m

ily
,

w
e

ha
ve

a
p →

b.
E

xc
lu

de
s

te
xt

ua
l

te
xt

ua
l

te
xt

ua
l

te
xt

ua
l

L
et

p
be

a
fa

m
ily

,a
·b

=
0

Fig. 3. The main layers of the tool’s architecture

2) Translation Layer: The Translation Layer allows to
translate Graphviz DOT code (used for plain text description of
graphical feature models) into terms in the language of product
families algebra. The translation is syntax-based translation.

Through the services of the Translation Layer, the tool
serves as a bridge between several feature model techniques.
Using the corresponding term(s) to each graphical element of
a graphical feature model (as given in Table I), every feature
diagram can be transformed into an algebraic expression
using a bottom-up traversal. This recursive method translates
each subtree into an algebraic expression, starting from the
leaf nodes going up to the root. The result is unique up
to commutativity and associativity of the semiring operators.
Once we have the algebraic terms corresponding to a feature
model, we can perform algebraic operations on them. For
instance, we can simplify the term or re-factor it and then
redisplay the corresponding graphical feature model.

3) Term Evaluation Layer: The Term Evaluation Layer
is responsible for the two critical tool activities: (1) term
rewriting, and (2) the evaluation of Product families terms
into a concrete model.

Term Rewriting
The first activity allows calculations on product families. For
instance, if we take the example about a hardware family hw

given in Section II-A, through algebraic rewriting, one can
compute the list of products of this family as follows:

hw

= 〈 As defined in Section II-A 〉
hd · scr · (1 + scn) · (1 + prn) · (1 + scr)

= 〈 Distributivity of · over + 〉
(scr · 1 + scr · scn) · (1 + prn) · (1 + scr)

= 〈 1 is the identity for · 〉
(scr + scr · scn) · (1 + prn) · (1 + scr)

= 〈 Distributivity of · over +, and the fact that
1c is the identity for · 〉

(scr + scr · prn + scr · scn + scr · scn · prn)
·(1 + scr)

= 〈 Distributivity of · over +, and the fact that
1c is the identity for · 〉

scr (1)
+scr · prn (2)
+scr · scn (3)
+scr · scn · prn (4)
+scr · prn (5)
+scr · prn · prn (6)
+scr · scn · prn (7)
+scr · scn · prn · prn (8)

At the end of the above derivation, we have an PFA term
that gives the eight members of the hw family. To find the
commonality of the members of the product family hw, we
simply calculate the the greatest common divider (GCD) of all
its members. In this case, it is easy to see that the GCD(hw)
is the product scr. In complex cases, the common algorithm
for finding the the GCD is used. It is a known algorithm
with known complexity; it is well known that gcd(m,n) ∈
O(ln(n)) for natural numbers m and n. On the other hand,
finding commonality using diagrams is more complex. Similar
calculations are used to eliminate the members of a family
that do not satisfy a constraint. For example, to state that two
features are incompatible, we simply write that their product
is the product 0. For example, if, in the above hw example, we
want to exclude the products containing scn and prn, we write
scn · prn = 0. Then, the above derivation, would continue as
follows:

hw

= 〈 Per the above calculation 〉
scr + scr · prn + scr · scn
+scr · scn · prn + scr · prn
+scr · prn · prn + scr · scn · prn
+scr · scn · prn · prn

= 〈 scn · prn = 0 〉
scr + scr · prn + scr · scn
+scr · 0 + scr · prn + scr · prn · prn
+scr · 0 + scr · 0 · prn

= 〈 0 is an annihilator for · 〉
scr + scr · prn + scr · scn + 0 + scr · prn
+scr · prn · prn + 0 + 0

= 〈 0 is neutral for + 〉
scr (1)
+scr · prn (2)
+scr · scn (3)
+scr · prn (5)
+scr · prn · prn (6)

Hence, only the products numbers (1), (2), (3), (5), and (6)
satisfy the constraint. We note that PFA allows more complex
constraints that we will discuss later when we use the tool on
a case study.

This kind of algebraic manipulation is the first responsibility
of the Term Evaluation Layer.
The Evaluation of Product Families Terms into a Concrete
Model
The evaluation of terms with and without variables in a given
algebra is a common topic in algebraic specification. In [21,
Chapter 1], the reader finds an exhaustive discussion on this
issue. We give here the essentials for the presentation of our
tool. In our case the signature of the product families algebra
is (S, +, 0, ·, 1) as given in Definition 2.1. A signature gives
mainly the set of sorts (in our case it is a set of product
families), and a set of operators and their arities. The set of
operations for this algebra is OP = {+, 0, ·, 1} (constants are
considered as operations of arity 0). A term that is written
according to the signature of the product families algebra can
be translated to a corresponding term within the language of its
models (or any algebra with the same signature SIG-algebra).
The following definition gives the evaluation of a term in
the product families algebra into one of its models that use
BDDs (i.e., set or bag models).

Definition 3.1:

(a) Let TOP be the set of ground terms of a signature
F = (S, +, 0, ·, 1) as given in Definition 2.1. Let
B = (B, plus bdd, zero bdd, dot bdd, one bdd) be a
model for F where the elements of B are sets of BDDs.
The evaluation

eval : TOP −→ B

is recursively defined by

(i) For all constant symbols N ∈ {0, 1}, we define
eval(N) as follows:

eval(0) = zero bdd
eval(1) = one bdd

(ii) For all No(t1, t2) ∈ TOP, where No ∈
{+, ·} is a 2-arity operation symbol, we define
eval(No(t1, t2)) as follows:

eval(+(t1, t2)) = plus bdd(eval(t1), eval(t2))
eval(·(t1, t2)) = dot bdd(eval(t1), eval(t2))

(b) Given a set of variables X for SIG = (S, OP) and an
assignment

ass : X −→ B

with ass(x) ∈ B for x ∈ X . The extended assignment,
or simply extension

ass : TOP −→ B

of the assignment ass : X −→ B is recursively defined
by

(i) ass(x) = ass(x), for all variables x ∈ X
ass(x) = eval(No), for all constant symbol No ∈
{0, 1}

(ii) ass(No(t1, t2)) = eval(No)(ass(t1), ass(t2)), for
all No(t1, t2) ∈ TOP(X), which is the set of terms
containing variables from X .

The Definition 3.1 gives a straight forward mechanism to
move from a specification of a product family in the product
families algebra into its BDD corresponding. It translates a
term within the language of the product families algebra into
a term within the language of its model B. The zero bdd
is the empty set. The one bdd is a set that contains a
BDD that represents either the empty set in the set model,
or the empty bag in the bag model. The empty set and the
empty bag are both represented by the BuDDy bddfalse.
Definition 3.1 is indeed implemented to evaluate a PFAterm
in its corresponding in a model for PFA.

The operation plus bdd and dot bdd are defined as a
combination of operations on BDDs representing set or bag
(as we discussed in Section II-B) and that according to wether
we are in a set model or a bag model. We note that plus bdd
is the same for both models.

4) Concrete Models Layer: The most important layer is
the Concrete Models Layer. It allows the transformation of
an abstract feature model into several concrete models. For
instance, some models may involve the specification of a
feature (e.g., as a finite state machine or using another
formalism) or they simply indicate the presence or absence
of a feature, and the relationships among features.

In the current version of the tool we have the two models
discussed in Section II: the set-based model and the bag-
based model. The first is suitable for capturing abstract feature
models that do not not allow duplication of features within
a product. The second is used when a feature can have
several occurrences in a product. this situation can be found
in hardware product families.

5) BDD Layer: The BDD Layer allows to code product
families expressed by a term resulting from the transformation
of the Concrete Models Layer into a BDD. The code of
this layer uses BDD Buddy library, which we considered
particularly useful for our purposes because of the exhaustive
list of basic functions it provides. BuDDy can handle up to
50, 000 nodes in every megabyte of memory. The decision
making per path is polynomial with regards to the number of
variables used in a BDD. According to [22], it can handle
efficiently up to 232 nodes assuming there is no limit on the
memory resources.

In Subsection II-A1, we laid out a concrete representation
of the operations and constants of PFA in terms of operations

on sets and bags. Therefore, simple representation of sets and
bags with BDDs should lead straight forward to a representa-
tion of terms within the language of PFA in terms of BDDs. In
the following, we discuss the representation of sets and bags
with BDDs.

Let IF be a finite set of arbitrary features denoted by
f1, · · · , fn. The boolean expression that corresponds to the set
{f3, f5} is f1 f2 f3 f4 f6 · · · fn ∨ f1 f2 f3 f4 f5 f6 · · · fn. So,
in this expression, the feature names play the role of boolean
variables. The term fi indicates the absence of the feature fi.
Figure 4 shows the BDD corresponding to the set {f3, f5}
with IF is limited to 6 features (i.e., n = 6).

Fig. 4. The BDD for the set {f3, f5}

While the representation of sets using BDDs is straight
forward, the representation of bags is quite challenging. The
BDD libraries such as BuDDy [23] do not provide support for
representing bags as BDDs. We articulated a representation
of a bag by encoding cardinalities of elements in the bag
within the BDD. For encoding the cardinality, we take in
addition to IF another set that we denote by C. The elements of
C def= {v0, v1, · · · , vm} are used to encode (in binary code) the
number of occurrences of a feature in the bag. For example, for
m = 2 (i.e., C = {v0, v1, v2}) the bag {| f3, f3, f3, f5, f5 |}
can be represented as follows:

f1 f2 f3 f4 f6 · · · fnv0 v1 v2 ∨ f1 f2 f3 f4 f5 f6 · · · fnv0 v1 v2

The sub-term v0 v1 v2 encodes 011, which is the binary rep-
resentation of the number of occurrences of f3. Figure 5 shows
the BDD corresponding to the bag {| f3, f3, f3, f5, f5 |} with
IF is limited to 6 features (i.e., n = 6) and C def= {v0, v1, v2}.

Fig. 5. The BDD for the bag {| f3, f3, f3, f5, f5 |}

The size of C determines the maximum number of occur-
rences allowed within a bag. When the cardinality of C is m,
we can represent bags with a maximum of 2m − 1 number of
occurrences of its elements.

This representation enables the implementation of the oper-
ations on sets and bags based on BDD operations.

The following code gives the implementation of set union
using BDDs, where set union is simply expressed as the
operation | (i.e., or) on BDDs.

bdd setUnion(bdd s1, bdd s2){
bdd u;
u = s1 | s2;
return u;
}

On the other hand, set intersection is implemented as the
operation & on BDDs.

bdd setIntersection(bdd s1, bdd s2){
bdd u;
u = s1 & s2;
return u;
}

We would like to point that, for instance in the set model,
a product family is a set of sets. To handle BDDs, we use
the BDD library, BuDDy, developed by Jørn Lind-Nielsen.
BuDDy library is proven to be more efficient compared to
other available libraries [24].

In the set model, a node is associated to a feature. In the
bag model, we use some of the nodes to encode the number of
occurrences. Therefore, we expect to handle 232−m features,
where m is the number of nodes used to encode the number
of occurrences of a feature in a product. With m = 10, we
can handle number of occurrences ranging from 1 to 1024.

IV. ILLUSTRATIVE EXAMPLE

We present a simple example to illustrate how the tool
translates the feature model into a term in the language of
the product families algebra. It then uses BDDs to implement
the algebraic operations and to decide the relations defined
on product families. The following example is adapted from a
Human Resource System Requirements Specification that can
be found in [25]. The reader should notice that some collec-
tions of features are essential (i.e., mandatory), while others
are not. For instance, ”Internet/intranet enabled ESS systems“
set of features is essential to all member of the family; we
point to it by placing ”Essential“ beside it in Table II, which
summarises the general structure of the family.

TABLE II
EMPLOYEE SELF SERVICE (ESS) SOFTWARE FAMILY

Collection of Features Features Ess.l/Opt./Alt.

Internet/intranet en-
abled ESS systems 1) Personal Info

2) Personal Info Flexibility
1) Essential
2) Essential

ESS - basic personal
tasks 1) Basic Personal Tasks

2) Update Personal Info
3) Employment History
4) HR Policies

1) Essential
2) Essential
3) Essential
4) Essential

ESS - time and
attendance tasks

1) Time Management
2) Absence Management
3) Absence Information
4) Absence Calender
5) Holiday Entitlement
6) Holiday Administration

1) Optional
2) Optional
3) Optional
4) Optional
5) Optional
6) Optional

ESS - expenses tasks
1) Expenses Tasks 1) Optional

ESS - payroll and
benefits tasks 1) Payroll Administration

2) Either Benefit Display
or
Multi Benefit Programs

1) Optional
2) Alternatives

The FODA feature model corresponding to the Employee
Self Service (ESS) Software Family is given in Figure 6.

A. Formal Specification of a Family

The algebraic term corresponding to the above family is the
following:

Fig. 6. The FODA diagram corresponding to employee self service

ESS = Personal Info · Personal Info Flexibility
·Basic Personal Tasks · Update Personal Info
·Employment History · HR Policies
·(1 + Time Management) · (1 + Absence Management)
·(1 + Absence Information · (1 + Absence Calender))
·(1 + Holiday Entitlement · (1 + Holiday Administration))
·(1 + Expenses Tasks) · (1 + Payroll Administration)
·(Benefit Display + Multi Benefit Programs)

The above FODA diagram can be translated into a structured
PFA specification. In the following, we provide the structured
specification of the ESS family that can be directly loaded to
our tool. It can be either obtained through the translation from
a graphical model or directly written in the language of PFA.

#List of basic features
bf personal_info % personal information
bf personal_info_flexibility % personal info flexibility
bf basic_personal_tasks % basic personal tasks
bf update_personal_info % update personal info
bf employment_history % employment history
bf hr_policies % hr policies
bf time_management % time management
bf absence_management % absence management
bf absence_information % absence information
bf absence_calendar % absence calendar
bf holiday_entitlement % holiday entitlement

bf holiday_administration % holiday administration
bf expense_tasks % expense tasks
bf payroll_administration % payroll administration
bf benefit_display % benefit display
bf multi_benefit_programs % multi-benefit programs
End of the list of basic features

#-------
#Hierarchical presentation of the product family
#--
internet intranet enabled ess
internet_intranet_enable_ess =
(personal_info. personal_info_flexibility)

ess basic personal tasks
ess_basic_personal_tasks =
((basic_personal_tasks . update_personal_info)
. (employment_history . hr_policies))

ess time and attendance tasks
ess_time_and_attendance_tasks =

(((1 + time_management)
. (1 + absence_management))
. ((1 + (absence_information

. (1 + absence_calendar)))
. (1 + (holiday_entitlement
. (1 + holiday_administration)))))

ess payroll and benefits tasks
ess_payroll_and_benefits_tasks =
((1 + payroll_administration)
. (1 + (benefit_display
+ multi_benefit_programs)))

employee self service whole system
employee_self_service =
(internet_intranet_enable_ess
. ess_basic_personal_tasks
. ess_time_and_attendance_tasks
. ((1 + expense_tasks)
. ess_payroll_and_benefits_tasks))

In the above specification, the keyword ”bf ” precedes a
basic feature. The ”%” and ”#” symbols are used to introduce a
comment. A string preceded by a % symbol is a comment that
the system stores, while that preceded by a # symbol is com-
pletely ignored and is intended to simply document the spec-
ification. The tool allows the analysis of the product families
given by a specification similar to the above one. For instance,
a user can request the list of the common features of two or
all the products of a product family. Figure 9 gives the result
of the commonality of the families employee self service.
All the members of this family share the features per-
sonal inf, personal info flexibility, basic personal tasks, up-
date personal info, employment history, and hr policies.

We find that this family contains 432 potential members.
Some of them are not going to be genuine products due to
possible undesirable feature interactions. This number illus-
trates the combinatoric complexity in product families. The
multitude of the product family variation within a product
family model is a real limitation of product families modelling.
The remedies for this shortcoming are prescribed in the
literature through three approaches. The first is a combination
of modularity, encapsulation, and aspects [26]. The second is
a combination of composition and hierarchy [26]. The third
is to use the feature model as a pattern for integrating the
specifications of each of the features and then for the elimi-
nation of the combinations of features that present conflicting
behaviours [27]. The proposed tool is based on PFA that
allows modularity and encapsulation. For instance, in the

Fig. 7. Jory interface showing the specification of the family em-
ployee self service and the constraint applied to it

Fig. 8. Jory interface showing the size of the constrained family em-
ployee self service

above example, the specification of the employee self service
illustrates these characteristics. The paper [10] gives several
examples on the capabilities of PFA in dealing with combining
orthogonal views of a product family, which relates to the
second remedy. When a feature has a formal specification such
as a Z schema or a finite state machine, then it is easy to define
concrete feature composition and selection (i.e., ·,+) that
would enable us to remove inconsistent features. For example,
when a feature is given by its Z schema, the operation · can be
schema integration. The proposed tool, then would be extended
by a model that captures this new meaning for the operators
of the algebra PFA.

At its current state, the tool provides the basic operations on
product families. It allows to obtain the size, and the list of the
products of a family. It computes as well the commonality of
the products of a family. It answers questions such as whether
a family a is a subfamily of family b, or whether a refines b. It
allows as well to apply a constraint on a product family. For

Fig. 9. Commonality of the family employee self service

instance, if we require that each time we have the feature
payroll administration in the family employee self service,
we should have the feature holiday administration. Figure 7
illustrates how this constraint is provided to the system in the
field ”Parameters” of the user interface. Then we can perform
all the operations provided by the tool on the restricted family.
For instance the family employee self service with the above
constraint contains 288 products (as shown in figure 8), while
without any constraint it contains 432 products.

Figure 10 is the screen-shot that gives the answer of the
tool when asked whether the family time management is a
subfamily of ess time and attendance tasks. The tool returns
”yes” for true and ”no” for false.

Fig. 10. Usage of IsSubFamily function of Jory

Figure 11 shows the result obtained for the proposition

internet intranet enable ess v personal info

Based on these basic functions of the system, one can
perform more complex analysis tasks. For instance, in [10]

Fig. 11. Usage of Refines function of Jory

integration constraints of view giving partial specification
of a family are defined using the notions of refinement of
Definition 2.5. Sets of integration constraints that link (families
of) system features in one view to other (families of) features
in the same or a different view are used in reducing the
size of a family by removing the products that do not satisfy
the integration constraints. Both, families and constraints, are
formalised using a product family algebra.

To check the adequacy of PFA, a prototype implementa-
tion [14] of the bag model has been written in the functional
programming language Haskell. In this prototype, features are
simply encoded as strings. Bags are represented as ordered
lists and · as bag union by merging. Sets of bags are imple-
mented as repetition-free ordered lists and + as repetition-
removing merge. This prototype can normalise algebraic ex-
pressions over features into a sum-of-products-form. We used
this prototype tool to perform parallel testing on our tool.
Both systems are provided with the same input and the result
as well as the performance are compared. Jory has higher
performance than the Haskell prototype. It is faster due to use
of BDDs and it can handle larger product families.

V. CONCLUSION AND FUTURE WORK

The proposed tool is based on an algebra that captures the
inherent properties of product families. At its current state, It
proposes two models to reason on product families. When the
composition of features is idempotent then, one should use the
set-based model. When the number of occurrences of a feature
is relevant (i.e., the composition of features is not idempotent),
then the bag-model is recommended. This situation is found in
dealing with hardware features for instance. A robot with four
wheels is a different product from the one with two wheels.

The tool’s design allows adding other models. For instance,
a feature might be instantiated as a Z schema and the operation
·, and + can be evaluated into operations on schema. We
aim at extending the tool with other concrete models for the
product families algebra that would allow us to reveal feature
interactions at a concrete level.

The most recent tools introduced in the literature deal with
feature based reasoning or configuration and are based on
theorem provers and some of them on BDDs [28]. However,
they use BDDs to implement proposition logic reasoning.

With its Translation Layer, Jory serves as a bridge between
several feature modelling techniques. It gives users the option
of using a graphical feature-modelling with the benefits of the
calculational power of algebra. Currently, the development of
the Translation Layer is a work in progress.

Our future development activities related to Jory is the
development of a high level language based on PFA to
easily specify complex product families without using the
basic PFA constructs. It would allow shorter specifications.
In [9]–[11], the reader can find several constructs of the
sought language. For example, the optionality of a feature
(or, more generally, a list of products) can be specified by
opt[s1, . . . , sn] instead of writing (1 + s1) · · · (1 + sn). Or,
one can write an instead of writing a · a . . . · a to express
that the feature a is present n times. Hence, to express that a
feature a is present at most n times in a product, one would
write opt[a]n. The semantics of this sought language would
be given by the product families algebra (or one of its models).

Also, we intend extend Jory by models that involves
techniques for detecting feature interactions. Several of these
techniques have been developed in the nineties. They were
intended to deal with single products. We can extend them to
product families.

REFERENCES

[1] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Software Engineer-
ing Institute, Carnegie Mellon University, Tech. Rep., November 1990.

[2] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, “FORM: A
feature-oriented reuse method with domain-specific reference architec-
tures,” Ann. Software Eng, vol. 5, pp. 143–168, 1998.

[3] M. L. Griss, J. Favaro, and M. d’Allessandro, “Integrating feature mod-
eling with the RSEB,” in Proceedings: Fifth International Conference
on Software Reuse, P. Devanbu and J. Poulin, Eds. IEEE Computer
Society Press, 1998, pp. 76–85.

[4] K. Czarnecki and U. Eisenecker, Generative programming: methods,
tools, and applications. ACM Press/Addison-Wesley Publishing Co.
New York, NY, USA, 2000.

[5] M. Eriksson, J. Börstler, and K. Borg, “The PLUSS approach - domain
modeling with features, use cases and use case realizations,” in Soft-
ware Product Lines, 9th International Conference, SPLC 2005, Rennes,
France, September 26-29, 2005, Proceedings, ser. Lecture Notes in
Computer Science, J. H. Obbink and K. Pohl, Eds., vol. 3714. Springer,
2005, pp. 33–44.

[6] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps, “Generic
semantics of feature diagrams,” Computer Networks, vol. 51, no. 2, pp.
456–479, 2007.

[7] O. Djebbi, C. Salinesi, and G. Fanmuy, “Industry survey of product
lines management tools: Requirements, qualities and open issues,”
in Requirements Engineering Conference, 2007. RE ’07. 15th IEEE
International, 2007, pp. 301–306.

[8] R. Krut, “Integrating 001 tool support into the feature-oriented domain
analysis methodology,” Software Engineering Institute, Carnegie Mellon
University, Tech. Rep. CMU/SEI-93-TR-11, May 1993.

[9] P. Höfner, R. Khedri, and B. Möller, “Feature algebras,” in FM
2006: Formal Methods, ser. Lecture Notes in Computer Science series,
J. Misra, T. Nipkow, and E. Sekerinski, Eds., vol. 4085. 14th
International Symposium on Formal Methods, McMaster University,
Hamilton, Ontario, Canada: Springer, August 21 - 27 2006, pp. 300–315.

[10] ——, “Algebraic view reconciliation,” in 6th IEEE International Con-
ferences on Software Engineering and Formal Methods. Cape Town,
South Africa, November 10-14, 2008, pp. 85–94.

[11] ——, “An algebra of product families,” Software and Systems Modeling,
p. 36, 2009, in press.

[12] W. S. Hatcher, “Calculus is algebra,” The American Mathematical
Monthly, vol. 89, no. 6, pp. 362–370, Jun. – Jul. 1982.

[13] D. L. Parnas, “On the design and development of program families,”
IEEE Transactions on Software Engineering, vol. SE2, no. 1, pp. 1–9,
1976.

[14] P. Höfner, R. Khedri, and B. Möller, “Feature algebra,” Institut
für Informatik, Universität Augsburg, Tech. Rep. Report 2006-
04, February 2006, (Last accessed March 05, 2010). [Online].
Available: http://www.informatik.uni-augsburg.de/lehrstuehle/dbis/pmi/
publications%/all pmi tech-reports/tr-2006-4 hoe khe moe

[15] M. R. A. Huth and M. D. Ryan, Logic in Computer Science: Modelling
and reasoning about Systems. Cambridge University Press, 2000.

[16] C. Y. Lee, “Representation of switching circuits by binary-decision
programs,” Bell System Technical Journal, vol. 38, pp. 985–999, Jul.
1959.

[17] S. B. Akers, “Binary decision diagrams,” IEEE Trans. Comput., vol. 27,
no. 6, pp. 509–516, 1978.

[18] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Transactions on Computers, vol. C-35, pp. 677–691, 1986.

[19] ——, “Symbolic boolean manipulation with ordered binary decision
diagrams,” Carnegie Mellon University, Pittsburgh, PA, USA, Tech.
Rep., 1992.

[20] A. Sefidcon and F. Khendek, “FID: feature interaction detection tool,”
Microprocessors and Microsystems, vol. 24, no. 6, pp. 283–289, 15
October 2000.

[21] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specification 1:
Equations and Initial Semantics, ser. EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, 1985, vol. 6.

[22] G. Janssen, “A consumer report on bdd packages,” Integrated Circuit
Design and System Design, Symposium on, vol. 0, p. 217, 2003.

[23] Sourceforge.net, “BuDDy: A BDD package,” (Last accessed on March
05, 2010). [Online]. Available: http://buddy.sourceforge.net/manual/

[24] A. Rimsa, L. E. Zárate, and M. A. J. Song, “Evaluation of different BDD
libraries to extract concepts in FCA perspectives and limitations,” in
Computational Science ICCS 2009, ser. Lecture Notes in Computer
Science series, vol. 5544. Springer, 2009, pp. 367–376.

[25] A. C. Limited, “Human resource system re-
quirements specification page,” http://www.axia-
consulting.co.uk/html/software requirements specifi-
cation example.html, Spiere House, 17 New Road Avenue, Chatham,
Kent ME4 6BA, United Kingdom, 2007, (Last accessed May 17, 2007).

[26] C. W. Krueger, “New methods in software product line practice,”
Communications of the ACM, vol. 49, no. 12, pp. 37–40, 2006.

[27] R. Khedri, “Formal model driven approach to deal with requirements
volatility,” Department of Computing and Software, McMaster Uni-
versity, Computing and Software Technical Reports CAS-08-03-RK,
January 2008.

[28] M. Mendonca, A. Wasowski, K. Czarnecki, and D. Cowan, “Efficient
compilation techniques for large scale feature models,” in GPCE ’08:
Proceedings of the 7th international conference on Generative program-
ming and component engineering. New York, NY, USA: ACM, 2008,
pp. 13–22.

