
 Comparing GORE Frameworks: i-star and KAOS

Vera Maria Bejamim Werneck1, Antonio de Padua Albuquerque Oliveira1,

Julio Cesar Sampaio do Prado Leite2

1
Universidade do Estado do Rio de Janeiro – UERJ-IME

Rua São Francisco Xavier 524, 6o Andar Bloco B – Rio de Janeiro – RJ, Brazil

2
 Pontifícia Universidade Católica do Rio de Janeiro – PUC-Rio

Departamento de Informática, Rua Marques de São Vicente 225 – RJ, Brazil,

{vera, padua} @ime.uerj.br, www.inf.puc-rio.br/~julio

Abstract

Goal-Oriented Requirements Engineering (GORE)

is an approach to requirements engineering dealing

with intentionality in accordance with the relations

among different actors. KAOS and i* (i-star)

frameworks have been receiving many references as

being important GORE proposals. This paper presents

an conceptual analysis comparing characteristics of

those methods giving examples related to actors’

relations definition, goal organizational model, tasks

representation, risk analysis, and non-functional

requirements. The aim of this work is to show both

frameworks benefits and drawbacks. We believe that

this analysis helps the understanding of the core

concepts of GORE as well as it draws attention to key

representation issues for both KAOS and i*.

1. Introduction

The increasing demand for complex software

applications requires methods that are able to deal with

intentionality. The RE sub-area: Goal-Oriented

Requirements Engineering (GORE) [1] comes to meet

these requirements in order to improve current

approaches, either Object Oriented or Aspect Oriented,

in the development of complex software applications.

Using Lamsweerde classification [1], several methods

can be considered as belonging to GORE: i*

Framework [2], GBRAM [6] [8], NFR [9], KAOS [1]

[11], TROPOS [19], The goal/strategy Map [20], GLR

[7]. Among these methods, KAOS and i* have been the

most cited.

Our work analyzes KAOS [1] and i* [2], discussing

qualitatively their coincidences and differences as well

as their benefits and drawbacks in the representation of

five characteristics (actors representation, goals model,

NFRs, tasks and risk analyses) which we consider

central in Goal-Oriented Requirements Engineering.

Contrary to Matulevicius and Heymans [16], which

analyzed i* and KAOS usage, we are analyzing the

languages concepts and structure. We also stress the

importance of properly representing goals and avoiding

the common confusion with actions [5].

In this article we describe, using an example, the

most important characteristics of KAOS and i*. Kaos

and i* are presented by means of two UML meta-

models as described in Section 2. We explain the

comparison process, and provide the comparison

results in Section 3. We conclude by mentioning the

benefits of both frameworks in Section 4.

2. Goal-Oriented Requirements

Engineering (KAOS and i*)

First, Subsection 2.1, we describe the concepts used

for the comparison. They are: the requirements

activities, functional requirement (FR), non-functional

requirement (NFR), softgoal and goal. Subsection 2.2

covers the i* Framework and the third 2.3 presents the

KAOS Framework.

mailto:julio@inf.puc-rio.br
http://www.inf.puc-rio.br/~julio

2.1. Relating Activities and Goals to

Requirements Engineering

There is no common definition for Requirements

Engineering (RE) activities. Pohl [4] uses elicitation,

negotiation, specification, and validation and

Lamsweerde [3] uses elicitation, elaboration,

organization, analysis, negotiation, documentation, and

evolution as RE activities. In this work we adopted

elicitation, modeling and analysis as the RE main

activities. This is Leite´s [12] view, which we believe is

both simpler and concise. Elicitation means

understanding the Universe of Discourse and

discovering the software requirements. Modeling means

describing requirements information by means of

specific models. Analysis means verifying and validating

requirements models.

GORE considers organization and actors’ goals as

the source of requirements (both functional and non-

functional, so we need to first elicit goals in order to

elicit requirements. Different from the usual RE

approaches, which model just the requirements, GORE

approaches model goals, which are the reason why

requirements are needed. For i* there are two kinds of

goals: concrete goals, commonly called goals, and

softgoals. i* Framework is precise when it defines

goal: “A goal is a condition or state of affairs in the

world that an actor would like to achieve” [2]. And

softgoal is a kind of goal that is satisficed, rather than

satisfied, (a term coined by Hebert Simon to denote

lack of precision in the perception of satisfaction).

KAOS understand goal as i*.

Authors commonly consider that an NFR is a

softgoal, although we consider softgoals as different

from NFRs. Softgoals are used for qualifying specific

topics and how they are related to others [9] [2]. NFRs

are used in a general way for designating a quality that

the system must have. NFRs are related to software and

softgoals and concrete goals are related to actors’

interests and motivations. NFRs and softgoals represent

quality attributes or constraints, though. Both goals and

softgoals will be operationalized by functional

requirements in the software system, if implemented.

In a general, GORE methods use a combination of

structures either top-down/bottom–up or AND/OR

graphs which are elicited from why and how questions.

Goal-oriented methods ask why the functionality is

necessary and how the functionality could be

implemented. Working at the level of the “rationale” in

models, GORE deals with software functionality

considering different alternatives and criteria for

selection of alternatives [4].

2.2. The i* Framework

i* Framework [2] was proposed in 1995 by Eric

Yu’s thesis and since 1995 it has been used by other

methods. GLR, an ITU standard [7] and TROPOS

[19], were based on i*. i* modeling framework [2]

models organizational contexts based on the

dependency relationships among actors. The central

idea of i* is that: actors depend on each other for goals

to be achieved, for resources to be provided, for tasks

to be performed, and for softgoals to be satisfied1. i*

deals with two kinds of models: the Strategic

Dependency (SD) model and the Strategic Rationale

(SR) model.

For i* “an actor is an active entity that carries out

actions to achieve goals by exercising its know-how”

[2] and an actor is considered as a “super class” for

agent, position and role, Leite et al. [15].

The Strategic Dependency SD model depicts the

organizational environment context of the system as a

network of dependency relationships among actors.

This network consists of a set of nodes and links where

each node represents an actor and each link maps out

one dependency between two actors. Figure 1 shows in

the upper right side that one actor (called depender)

depends on one or more actors (called dependees)

through a dependency (either an end node or a

component node called dependum). A dependum may

be one of four types when it is an end (or when it is a

component node): a softgoal (or a SoftgoalFor), a task

(or a SubTask), a resource (or a ResourceFor), or a

goal (or a Subgoal).

The Strategic Rationale (SR) model expresses

organizational context and also internal relationships

among the intentional elements within an actor’s

reasoning. Rationales are modeled through means-ends

relationships, task decompositions, and softgoal

contributions. Figure 1 shows these signed by three

message tags. The means-ends relationship (means

node and end node in the Figure 1) has a means that

represents a softgoal (softgoal node) or a task (task

node) and an end that can be a Task, a Softgoal, a

Resource, or a Goal. The relation is called GT when the

end is a GOAL and the means is a TASK, and so on

defining five means-ends types {GT, TT, RT, ST, SS}.

But, when the relations are either ST (TASK –

SOFTGOAL) or SS (SOFTGOAL – SOFTGOAL)

they are called “softgoal” contributions. A

contribution may be of four types: {break, hurt,

ignored, help, make}.

1 “Softgoals are satisficed, rather than satisfied”, NFR

framework [9].

In an SR model an actor can have one or more

goals. Recursive representations can occur too: (1) a

softgoal may be a means and may be an end for another

relationship; (2) a goal in a task-decomposition may be

an end in a means-ends relationship. Figure 1 shows

that two other relations occur in a task-decomposition:

a Subtask restricts the task (task node as the means)

and Softgoal qualifies the task (task node as the

means).

Figure 1. i* Framework meta model [5]

Figure 2 is an example of i* SD model for the EC -

Expert Committee example. The model illustrates the

strategic dependency relationships among actors. In

this paper, we only focus on the relationship between

chair and author. The SD model shows that the chair

depends on the author to achieve the goal “Article

BeSent”, to satisfy the softgoal “Quality [article]” and

to provide the resource “Camera Ready” furthermore,

the author depends on the chair to get the resources

“Quality Directions” and “Review result”.

Resource

Goal

Softgoal

Component node

1..*

Actor

(END)

(END)

(END)

1..*

0..*

Attains

1

Qualifies

to be satisficed

to be produced

to be achieved

Ends node

Task node

(MEAN)

Softgoal node

(MEAN)

Means node

ResourceFor

Subtask

Subgoal

SoftgoalFor

0..*

Restricts1

Contribution type

1..*

Has

1..*

1..*

1..*

1

1

Is a

Depends on

Dependency

1..*

Uses

1

1 dependum

Task

(END)

to be accomplished

dependee depender

i* meta model

1

1

Link Type: {ST or SS}

Means-Ends link: To-From

Links: {GT, TT, RT, ST, SS}

task decomposition links

Is a

May be 1

1

Figure 2. SD Model (EC - Expert Committee) adapted from [18]

Figure 3 portrays the SR model involving the actors

author and chair. See for example chair when the chair

is dealing with authors, chair’s main goal is “Best

Articles BePublished”, which has one only task to

achieve the goal. The diagram shows the task “Manage

submitted articles” has three goals (or sub goals)

“Articles BeReceived”, “Articles BeReviewed”, and

“Articles BePublished”. These associations, by task

decomposition, mean that these goals are part of the

task and only if the chair achieves all these goals (“and”

association), the task will be concluded.

Figure 3. SR Model (EC - Expert Committee), this example, from [18], is part of the SR Model.

The diagram shows also that the goal “Articles

BeReceived” has two alternatives (“xor” association),

two tasks may be performed “Receive Articles

Directly” or “Receive Articles bySystem”. The goal

dependency “Article BeSent” associated means a goal

that must be achieved for both alternatives (tasks).

“Articles BeReviewed” has a task “Manage Review”.

The model shows that an essential task

“ReceiveArticle BySystem” depends on “Article

BeSent” from author; needs “Prepare Quality

Directions” to authors, in order to give the quality

specifications and directions; creates a resource

“Authors of Articles” to other tasks and provides chair

with some softgoals: “Effortless [submission]”,

“Security [submission]”, and “Secrecy [review]”. One

can see in Figure 3 that both the softgoal “Security”

and the softgoal “Secrecy” contribute “negatively”

(hurt) to the softgoal “Effortless” because probably

chair will have to enter with a password for this

process. By showing these softgoals in the SR model

the software engineer has the information about the

concerns that must be operationalized.

2.3. The KAOS Framework

KAOS has been developed and refined for over 15

years of research with the development of tools and

with experience in several industrial projects [1].

KAOS, according to Lamsweerde [1], [10] means Keep

All Objects Satisfied. This method is considered a

multi-paradigm model that allows a combination of

different levels of expression and rationale: semiformal

for modeling and structuring goals, qualitative for

alternative selections and formal for the critical

elements. In general, KAOS modeling has an external

graphic semantic layer with concepts, attributes and

relationship and an internal formal layer assisted by

temporal logics. In Figure 4 we show a KAOS meta-

model built based on the meta-model proposed by

Heaven and Finkelstein (2004) [17].

Figure 4. KAOS meta-model (adapted from Heaven and Finkelstein 04 [17])

Object Action

1 ..*

reduces

Agent Event

Goal

Entity

Requisite

0 ..*

Assumption Requirement

1 ..*
1 ..*0 ..*1 ..*

concerns

ensures

0 ..*

0 ..*

1 ..*controls

0 ..*

1 ..*

0 ..*
0 ..*0 ..*

0 ..*

reducesconflicts

operationalises

1 ..*

0 ..*

0 ..*

0 ..* 0 ..*

0 ..*

inputs

outputs

0 ..*

performs

is responsible-for

1 ..*

triggers

Relation

Constraint

constrains

0 ..*

1 ..*

constrains

requires

1 ..*

1 ..*

wishes

1 ..*

1 ..*

2 ..* relates

1 ..*

KAOS meta model

The KAOS concept of goals (Figure 4) can be

defined as a prescriptive intention statement about some

system whose satisfaction, in general, requires

cooperation of some agents that configure the system.

Goals are reached by requisites that can be

requirements that are operationalized into specification

of software operations (actions) or assumptions that

express behaviors performed by external agents.

Software agents are active components that perform

some operations (actions) which can reach requirement

they are responsible for. Objects can be specified to

describe the project structural model and they can be

passive (entities, relations or events) or active (agents).

Agents are related together through their interfaces

made of object attributes that are controlled by those

agents. Obstacles (constraints) and goals relations

(conflict goals) are used to permit analyses scenarios

where goals are obstructed and not satisfied, therefore

contributing to identify vulnerabilities [10].

KAOS proposes four visions of the problem which

are treated by the following models: Goal Model,

Object Model, Responsibility Model and Operational

Model. Those models are based on goals, requirements,

agents, expectations, obstacles, domain propriety,

operations, entities, event, and relationship and

associations among those concepts.

Figure 5 was built based on the Objectiver tool

documentation [13] and presents an example of the four

models based on the Expert Committee example.

The Goal Model is a set of goal diagrams inter-

related that contains goals, sub-goals, expectations,

requirements, domain proprieties, agents, conflicts,

obstacles, resolutions and refinements of obstacles.

Goals are organized in a top-down AND/OR hierarchy.

The refinements of goals end when a sub-goal is

performed by an agent. Goals can refer to services

(functional goals) and to the quality of services (non-

functional goals). Each goal in the model is in general

justified by another goal that explains why the goal was

defined in the model. Each goal is refined as a set of

sub-goals describing how the goal in a higher level can

be reached. Requirements and expectations are

modeled in a lower level and have to be associated to

an agent. Obstacles (in red in the Goal Model of Figure

5, for instance: see System Invasion) can be introduced

in the model to permit goal alternatives and analyses of

vulnerabilities.

The goal oriented process of KAOS is developed

through activities: (i) identification of goals, (ii)

formalization of goals, (iii) modeling of objects and

identification of state variables, (iv) detection and

resolution of goal conflict levels, (v) refining of goals

and identification of agent responsibilities, (vi)

generation of obstacles and resolution to goal

fulfillment and (vii) derivation of operation

requirements from system goals.

The Responsibility Model represents the agents’

responsibilities and interface describing for each agent

the requirements under his responsibility and

expectation assigned to the agent. This model contains

all diagrams of responsibilities where each diagram

shows all requirements and expectations under the

agent’s responsibility. The responsibility and interface

attribution are defined on the Goal Diagram and the

Responsibility Model is generated automatically.

The Operation Model describes all agents’ behaviors

that are necessary to reach their requirements.

Behaviors are expressed in terms of operations and

tasks performed by the agents. Those operations work

with objects defined in the Object Model which can

create, change their states and activate other

operations. This model represents the functional vision

of services that are assigned to the problem under study

in which the following concepts can appear: operations,

agents, entities and associations, events and restriction.

Figure 5. KAOS Models. Examples from Objectiver [13] show the four perspectives of KAOS Models.

3. The Comparison Process: Analyzing

the Frameworks

This work was developed based on the following

activities: (i) study of the methods KAOS and i*, (ii)

modeling, using KAOS and i*, the classic case study of

Conference Expert Committee System, (iii)

identification of essential issues of GORE

representation, (iv) representations analysis of each

model, and (v) qualitative analysis of both methods.

KAOS modeling was supported by the Objectiver

tool which helps the construction of the models and

diagrams. Objectiver provides documentation support

and an interface easy to use. Objectiver is a commercial

tool, and there are limitations for the free academic

license.

i* modeling used the OME. This tool is open-source

and supports both SD and SR modeling. OME tool

helps the edition of diagrams, but has limitations on

editing operations. For instance, the OME tool lacks a

support for “cut and paste”, which of course is a burden

for designers.

Five issues were used to drive the qualitative

analysis: (i) treatment of actors/agents´ relations in the

target social context; (ii) the goal representation model;

(iii) task modeling, which is responsible for showing the

behavior of functional requirements, (iv) non-functional

requirements and (v) risk analysis that allows the study

of exceptions, pessimist and alternative scenarios

considering the functional and non-functional

requirements and their influences.

Goal Model Responsibility Model

Object Model Operational Model

Figure 6. The EC example modeled in KAOS

KAOS uses four models but the main focus is the

Goal Model, and the others are derived from it, while i*

has only two diagrams interconnected through strategic

dependencies. Although the requirement definition

process in KAOS and i* uses similar concepts: goals,

constraints/softgoals, operations/tasks, objects/

resources, they have different approaches to model and

rationalize about these concepts. KAOS from the

beginning of modeling is goal-oriented and its goals can

be decomposed into other goals until they can be

operationalized. The focus is on goal refinement. In i*

the strategic dependency guides the SD Diagram

modeling. In the SR Diagram the strategic

dependencies are defined in detail explaining how each

actor reaches the goals. Both methods define how

system goals can be reached and the mechanism of

alternatives can be analyzed.

In the following sections we are going to detail the

similarities and disagreements between the two methods

always trying to exemplify the discussion based on

Figures 1 to 6.

3.1. Goal Model

In KAOS the goal model starts with the

decomposition of goals into sub-goals until getting to a

requirement or expectation where the software agents

are responsible for the requirements and the

expectations of the human agent are expressed to an

interface. This model is top-down: it begins with the

most strategic goal and refines it by sub-goals. In this

model, conflict goals can be expressed as in Figure 6

(Review Proposal Accepted and Review Proposal

Refused) or, for example, the goal Safe System can be

in a conflict with the goal Cheap System (Goal Diagram

of Figure 5). Some goals can be in conflict with other

goals if neither can be satisfied simultaneously.

The KAOS concept of obstruction, obstacles,

obstacle refining and resolutions allow for the definition

of a failure or crash scenarios for the goals and the risks

associated with them. For example, in Figure 5 the

obstacle “System Invasion” is an obstruction to the goal

“Safe System” and the requisite “Enter Review

Interface”. The requisite “Reviewer Authorization

AND Refining

Goal

Requirement

Responsibility

Conflict

Agent

Assignment/Task

Expectation

OR Refining

Access” is an obstacle resolution to the obstacle

“System Invasion”.

In i* we do not have a specific goal model for the

conflict analysis, because SD focus is on the

intentionality dependencies of actors (agent, a role or a

position). In a SR Diagram goal details are defined in

the intern rationale of the actor. The intentionality

defines relations between different actors showing the

responsibility and strategic dependencies among them.

In this way it is possible to express scenarios where

goals can be performed by different actors and relations

can be explicit. In KAOS, these explicit relations cannot

be represented directly.

The goals are satisfied through one or more tasks

that can be decomposed in other goals, softgoals, task

and resources. The focus of i* is not only on goals but

on the concept of intentionality and strategic

dependencies that are sufficient to cover the multi-agent

scenarios because the cooperation relation among the

agents can be explicit.

The framework i* also allows modeling of critical

situations by using softgoals and their contributions

attached to the SR model. This diagram does not

rationalize about the conflicts, obstacles and resolutions

but through positive or negative contributions to

softgoals. For instance, in Figure 3, the option for the

alternative task “Receive Article by System” has

different impacts on Security, Secrecy and Ease of Use

(Effortless).. So obstacles can be modeled as negative

contribution to desired softgoals and resolution would

require a different alternative..

3.2. Actors

KAOS has the agent concept, which can be software

or human. They are represented in the Goal Model and

in the KAOS Responsibility Model, defining

requirements and expectations related to agents. Agents

are atomic entities. .

i* uses the more general concept of actors, which

can be expressed as agents, roles and positions. For

example, in the KAOS Goal Model in Figure 5 the

agent "Reviewer" has the responsibility of meeting the

expectation of "proposed revision accepts" however it

is not clear that the agent "Chair" depends on the

"Reviewer" for the goal to be satisfied as it can be seen

in SD Diagram in Figure 2.

Thus we can conclude that the KAOS agents as

defined in the Goal Model and the Model

Responsibilities do not directly show the relationships

between the actors. If we i* actor taxonomy we can

also represent that the actor "Chair" is a position that a

member of the program plays.

In summary, KAOS works with the agents concept

related to requirements or expectations in the Goal and

Responsibility Model. i* has structured of actors

allowing for a finer grain distinctions among different

types of actors as well as their relationship and as such

enriching the description of strategic dependencies.

3.3. Non-Functional Requirements

KAOS defines non-functional requirements in the

same way as functional goals. Although the Objectiver

tool [13] uses a different symbol for non-functional

goal, they are still treated as goals. The conflict notion

helps the representation of flexible goals (softgoals)

conflicting, but there is no special treatment.

i* defines the non-functional requirements as

softgoals that can contribute positively or negatively to

another softgoal. In i* a task can be decomposed into a

softgoals, as seen in Figure 3. This means that the task

in question may have quality attributes related to it and

that they will impact other goals, softgoals or tasks in

the model. When a softgoal is a component in task

decomposition, it serves as a quality attribute for that

task, guiding (or restricting) the alternatives selection to

the task decomposition. This representation allows a

different contribution analysis of the softgoals that can

be addressed simultaneously.

Such analysis can also be held in KAOS, but

focusing on anti-requirements scenarios which do not

explicit contributions from non-functional requirements.

3.4. Tasks

KAOS has an Operation Model that defines tasks as

an operations concept relating them to events, agents,

entities and requirements. So KAOS operationalizes a

requirement by making it explicit and presenting the

event, agent and involved entities. Tasks are related to

agents and expectations.

In i* the task concept is present in the SD model,

where actors can depend through a task which means

that the task should be carried out by "depender". In the

SR model, tasks can make goals operational and may

also be decomposed to model alternatives. This

representation can also link resources (entities) and it is

defined in the context (the dotted circle of Figure 3) of

an actor who is responsible for the task.

In short, both methods deal with tasks but KAOS

allows tasks to be related to events and as such more

detailed in an operational sense. On the other hand, an

i* task can be decomposed and related to other tasks,

goals, softgoals and resources. i* tasks, when linked by

the means-ends link, serve as alternatives, which may be

linked to softgoals by decomposition, and as such being

qualified and amenable to be used in a reasoning

process.

3.5. Risk Analysis

In KAOS the risk analysis is done by detailing the

obstacles. By exercising possible obstacle scenarios we

can assess the risk of the system and propose means as

to deal with such foreseeing obstacles. This analysis is

especially important in the study of the application

vulnerability analysis. In addition, the model can be

analyzed with respect to conflicting goals. The

formalization of obstacles and goals enable the formal

treatment and the use of deduction mechanisms, thus

improving the possibilities for automated verification.

In i*, risk analysis may be done by analyzing the

reason (rationale) inside the actor. By detailing

undesired situations (obstacles) as softgoals to be

avoided and softgoals contributions as relationships to

the undesired softgoal, it is possible to map the

conditions (contributions type, see Figure 1) to tasks

that resolve the undesired condition, by denying it. The

relationship means-end allows the alternatives

representation and the impact analysis of softgoals. This

analysis is powerful and useful because it can examine

solutions to conflicts in the stage of definition of

requirements. This analysis is qualitative but also

amenable for automated treatment.

Table 1. Five criteria comparison with drawbacks and potentialities.

 i-star (i*) KAOS Potentialities

Goal Model The models represent both

goals and softgoals .

The models also show tasks

and entities.

Models may be very complex

and huge.

The goal model does not

represent tasks and entities.

Models are divided into four

different ones, which may be

confusing. Models are very

detailed.

There are some i* extensions in

order to control complexity

named Visions [21] and

SDsituations.[18].

Actors Does not explore role and

position.

Shows collaboration in a

explicit way.

Does not provide a taxonomy

for agents.

Collaboration may be modeled,

but is not central.

There is one i* extension that

provides a diagram called

Strategic Actors (SA) Model

[15].

KAOS can model role and

position as responsibilities.

NFRs Represent NFR as softgoals,

allowing for qualitative

reasoning based on contribution

types.

NFRs are mentioned as a

different representation in the

CASE tool, but it is mainly

treated as an goal and refined

as an obstacle or constraint.

i-star uses softgoals as task

quality attributes and promotes

softgoal strategic dependencies

representation.

Tasks Lacks the event concept, as

well as the object concept, as

such is less operational.

The tasks may be modeled as

alternatives driven by softgoals.

Tasks are represented in an

Operational Model. Alternative

is managed at goal/requisite

level.

i* can represent events as

communication subtasks.

Risk Analysis Does not mention obstacles.

Risk analysis must be done

using denying of desired

softgoals in a detailed level.

Obstacle analysis helps the

introduction of risk analysis

early on.

i-star can model obstacles using

contributions types and

strategic dependencies to show

vulnerabilities/opportunities.

4. Conclusion

In this paper we compared KAOS and i*, using high

level Goals Oriented Requirements Engineering

concepts. Both methods have been explored by

different research groups. Industry dissemination is at

the beginning, but KAOS with the support of

Objectiver has been more effective in terms of

technology transfer.

In general, our observations can be summarized by

Table 1 above. Our experience indicates that there are

opportunities for contributions mainly in the process of

modeling with those methods. The modeling process of

i* has been studied and improved [5], but there is still

opportunities for new achievements on that direction.

The KAOS modeling process is very dependent on

sparse examples, and its documentation is fragmented.

However, Lamsweerd just edited a book where KAOS

plays a central role2.

The criteria we used is based on our interpretation

of the important aspects of GORE modeling, but also in

our experience with i* and to a lesser degree with

KAOS. We refrain to quantify or to assert the qualities

of one representation over another, this is not our goal.

We understand that Table 1 provides insights we have

observed in our previous work on both methods and in

the modeling of the Expert Committee (EC). We did

not exercise the follow up after the preliminary models,

and as such, we did not use the formalization of goals

in KAOS nor a detailed operationalization of tasks in

i*.

As such, the criteria we have stressed in Table 1 are

at a high level of abstraction, it provides the

opportunity for a general view, but, of course, needs

further study. We understand that the major difference

among KAOS and i* can be summarized by three

observations, as can be seen in the meta-models

presented.

First, KAOS provide a detailed basis for the

description of tasks (actions), see that a action is related

to a constraint and to an object, which can be: an agent,

an event, an entity, or a relation. In i*, on the other

hand, a task is related to a task, a goal, a softgoal or a

resource. As such, KAOS provide more support to a

detailed description.

Second, i* uses softgoal (NFR) as a driver to

decomposition by allowing means-end links to be

evaluated (contribution types) and as such making

explicit the design decisions in the model, whereas

KAOS treat NFR as goals to be decomposed

accordingly.

Third, KAOS provides a more explicit mechanism as

to deal with risk analysis, with the concept of obstacle

(constraint). Although we argued that i* could also

reason with respect to alternatives to undesired goals,

this requires a more detailed model.

Even limiting our comparison to qualitative criteria

based on our experience, we understand that stressing

2 Requirements Engineering: From System Goals to UML

Models to Software Specifications, 2009, Wiley by

Lamsweerd, A.v..

our insights does contribute for a better understanding

of the basic principles behind goal oriented

requirements engineering.

A comprehensive quantitative analysis is very

difficult since several systems, applying both

frameworks, would have to be developed. Given that,

we understand that there is still room for more detailed

qualitative analysis, and a combination of concepts

analysis, as we have performed, with the empirical

qualitative analysis conducted by Matulevicius and

Heymans [16] seems a reasonable path to follow.

5. References

[1] Lamsweerde, A. van; “Goal-Oriented Requirements

Engineering: A Guided Tour”, Proc. RE’01: 5th Intl. Symp.

Req. Eng., Aug. (2001).

[2] Yu, E.; “Modelling Strategic Relationships for Process

Reengineering”, PhD Thesis, Graduate Department of

Computer Science, University of Toronto, Toronto (1995).

[3] Lamsweerde, A. van; Engineering Requirements for

System Reliability and Security in Software System

Reliability and Security, M. Broy, J. Grunbauer and C.A.R.

Hoare (eds.), NATO Security through Science Series - D:

Information and Communicarion Security, Vol. 9. IOS Press,

196-238 (2007).

[4] Pohl, K. Process-Centered Requirements Engineering.

Taunton, Somerset, England, Research Studies Press Ltd

(1996).

[5] Oliveira, Antonio de Padua Albuquerque, Intentional

Requirements Engineering: A Method for Requirements

Elicitation, Modeling, and Analysis. 261 p. Doctoral Thesis –

Computer Science Department, PUC-Rio - Rio de Janeiro.

(2008).

[6] Anton, A; McCracken, W; Potts, C.; Goal

Decomposition and Scenario Analysis in Business Process

Reengineering. Proc. 6th Conference On Advanced

Information Systems Engineering (CAiSE’94), Utrecht,

Holland, June (1994).

[7] GRL - Goal-oriented Requirement Language, University

of Toronto, Canada. At:

<http://www.cs.toronto.edu/km/GRL/>. Access: Jan (2008).

[8] Anton, A; “Goal-Based Requirements Analysis”,

Proceedings 2nd IEEE International Conference on

Requirements Engineering, (1996).

[9] Chung, L.; Nixon, B.; Yu, E.; Mylopoulos, J.; Non-

Functional Requirements in Software Engineering – Kluwer

Academic Publishers, Massachusetts, USA, (2000).

[10] Lamsweerde, A. van, Letier, E. (2003) From Object

Orientation to Goal Orientation: A Paradigm Shift for

Requirements Engineering. Proc. Radical Innovations of

Software and Systems Engineering, LNCS, (2003).

[11] Dardene, A., Lamsweerde, A. van; Fikas, S; “Goal-

Directed Requirements Acquisition”, Science of Computer

Programming, 20, pp. 3-50, (1993).

[12] Leite, Julio C. S. P.; Oliveira, A de Padua A.; Client

Oriented Requirements Baseline, Proceedings of the Second

International Symposium on Requirements Engineering,

RE95, IEEE Computer Society Press, pp. 108-115 (1995).

[13] Objectiver's documentation - general overview, Access:

Aug (2007) http://www.objectiver.com/en/documentation/

[14] Letier, E.; Lamsweerde, A. van. Agent-Based Tactics for

Goal-Oriented Requirements Elaboration Proceedings

ICSE'2002 - 24th International Conference on Software

Engineering, Orlando, May (2002).

[15] Leite, Julio; Werneck, Vera; Oliveira, A. Padua; Capelli,

Claudia; Cerqueira, Ana Luiza; Cunha, Herbert; Baixauli,

Bruno; “Understanding the Strategic Actor Diagram: An

Exercise of Meta Modeling” The X Workshop on

Requirements Engineering; Toronto, Canada – May (2007).

[16] Matulevicius, R., Heymans P.; Comparing Goal

Modelling Languages: An Experiment, REFSQ 2007, LNCS

4542, pp. 18-32, (2007).

[17] Heaven, William; Finkelstein, Antony; - UML profile to

support requirements engineering with KAOS. IEE

Proceedings - Software 151(1): 10-28 (2004).

[18] Oliveira, Antonio de Padua A.; Cysneiros Luiz M.; Leite,

Julio C. S. P.; Figueiredo, Eduardo M. L.; Lucena, Carlos José

P.;: Integrating scenarios, i*, and AspectT in the context of

multi-agent systems. 204-218 – CASCON (2006).

[19] Castro, J.; Kolp, M.; Mylopoulos, J. "Towards

Requirements-Driven Information Systems Engineering: The

Tropos Project." In: The 13th international conference on

advanced information systems engineering, Oxford: Elsevier

Science Ltd, v.27, n.6. (2002).

[20] Rolland, Colette and Salinesi, Camille; Modeling Goals

and Reasoning with Them - Engineering and Managing

Software Requirements - Springer Berlin Heidelberg 189-217

(2005).

[21] You, Zheng; Using meta-model-driven views to address

scalability in i* models, Master of Science thesis, Graduate

Department of Computer Science, University of Toronto,

2004, pp. 231.

http://www.objectiver.com/download/documents/home%202/general%20leaflet.pdf
http://www.objectiver.com/en/documentation/
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Finkelstein:Anthony.html
http://www.informatik.uni-trier.de/~ley/db/journals/iee/iee-s151.html#HeavenF04
http://www.informatik.uni-trier.de/~ley/db/journals/iee/iee-s151.html#HeavenF04
http://www.informatik.uni-trier.de/~ley/db/journals/iee/iee-s151.html#HeavenF04
http://www.sigmod.org/dblp/db/indices/a-tree/c/Cysneiros:Luiz_Marcio.html
http://www.sigmod.org/dblp/db/indices/a-tree/l/Leite:Julio_Cesar_Sampaio_do_Prado.html
http://www.sigmod.org/dblp/db/indices/a-tree/f/Figueiredo:Eduardo_Magno_Lages.html
http://www.sigmod.org/dblp/db/indices/a-tree/l/Lucena:Carlos_Jos=eacute=_Pereira_de.html
http://www.sigmod.org/dblp/db/indices/a-tree/l/Lucena:Carlos_Jos=eacute=_Pereira_de.html
http://www.sigmod.org/dblp/db/indices/a-tree/l/Lucena:Carlos_Jos=eacute=_Pereira_de.html
http://www.sigmod.org/dblp/db/conf/cascon/cascon2006.html#OliveiraCLFL06

