
Towards Variability Design as Decision Boundary Placement

Catalin Bidian, Eric S.K. Yu

Faculty of Information Studies, University of Toronto, Canada

{catalin.bidian, eric.yu}@utoronto.ca

Abstract

Complex information systems have numerous

design variables that are systematically decided upon

during the design process. In high-variability systems,

some of these decisions are left open and deferred to

later stages. For example, in product line

architectures, some decision variables are used to

generate families of products with variations in

features. In user-adaptive systems, the behavior of the

system is determined at runtime, based on user

characteristics and preferences. In this paper, we

propose to characterize variability in terms of

boundaries in design decision graphs which depict the

space of alternatives. A design decision about

variability, such as what choices should be left to the

user and which ones should be fixed at which stage in

the design process, is then a question of where to place

that decision boundary along some path in the relevant

decision graph.

1. Introduction

Designing the architecture for a product family

means to create the structures that enable the system to

achieve its quality goals [1]. Software architects

typically plan for changes and put various supporting

mechanisms in the architecture. The architectural

documentation, however, does not always reflect the

architects’ thoughts and efforts to achieve support for

variability and understanding these situations where

change has been planned for is not done explicitly.

Complex information systems have numerous

design variables that are systematically decided upon

during the design process. In high-variability systems,

some of these decisions are left open and deferred to

later stages. For example, in product line architectures,

some decision variables are used to generate families of

products with variations in features. In user-adaptive

systems, the behavior of the system is determined at

runtime, based on user characteristics and preferences.

Analyzing and documenting variability is essential,

particularly if the architecture is used for many product

versions over a long period of time, or in a product line

where the same architecture is used to build different

products.

2. Related Work

The explicit representation of variability in various

phases of the product development has been suggested

by recent literature. However, to our knowledge, there

have been no attempts to provide a uniform

representation of variability across all phases and

characterize it in terms of boundaries in decision

graphs which depict the space of alternatives.

Variability within system architecture is typically

considered during the design phase and when the

product line architecture includes different alternatives

for dealing with the variation in features among

products [1].

Liaskos et al [2] have introduced a variability-

intensive approach to goal decomposition, tailored to

support requirements identification for highly

customizable software. The approach is based on the

semantic characterization of OR-decomposition of

goals. The variability in solution must reflect the

variability of the problem and therefore the

identification of the latter is regarded as early

requirements engineering problem [2]. Considering

variability at the stakeholder level, in terms of their

goals, characteristics, and contexts, before drafting a

solution, allows us to increase the chances for the

resulting product to feature an appropriate set of

variation points.

An important part of domain analysis is the

commonality and variability analysis, in which the

common and varying elements of a domain are

identified. The result is formulated as a feature model,

which represents admissible combinations of user-

visible characteristics of the system-to-be in a concise

hierarchical manner [2]. In goal models it is possible to

represent variability in stakeholder goals, through the

OR-decomposition of goals. When a parent goal is OR-

decomposed into subgoals, fulfillment of any of the

latter implies fulfillment of the former.

Bachmann et al [3] have proposed a conceptual

meta-model of variation, based on variation points,

variants, assets, and rationale. The key point of the

meta-model is the separation of the representation of

variability from the representation of the various assets

developed, with focus on the traceability between

various assets.

Softgoals variability is an equally important aspect.

Gonzalez-Baixauli, Leite, and Mylopoulos [4] propose

a visual variability analysis technique. The model is a

restricted version of the general NFR goal model, and

is divided into two sub-models: a functional goal model

and a softgoal one. Each OR-path in the functional goal

sub-model represents a possible variant for the

software-to-be [4].

A similar approach is the decision-making process

[5] to create a generic software design, capable of

accommodating the space of alternative functionalities,

each of which able to fulfill stakeholders’ goals. The

authors generate feature models where features have

sub-features of a single type and cannot have more than

one set of Alternative or OR-features. In general, there

is no one-to-one correspondence between goals and

features, and while high-level goals can be mapped

directly into grouping features in the initial feature

model, leaf-level goals may be mapped into a single

feature or multiple features [5].

3. Our Approach

We analyze variability at different stages in the

product development process and consider that

stakeholders, including designers, have various roles

throughout this cycle; their goals may differ at each

stage. Goals vary not only from one stakeholder to

another, but also within the role boundary, affecting

other goals as well as the availability of product

features.

To depict variability in goals and features we use

the i* multi-agent modeling framework [6] and the OR-

decomposition of goals [2], along with feature models

[7] and we introduce decision boundaries in models,

represented using dashed lines, to augment the space of

user alternatives by depicting goals which correspond

to product features whose usage will be deferred to a

later stage.

Feature models are used to describe variable and

common properties of products in a family of products,

and to derive and validate configurations of software

systems. They represent features that will be supported

by the actual product. Goal models analyze the desires

of users; they are intentional, describing the intended

state of affairs, explaining why, or why not, processes

and requirements exist, what are the alternatives that

have been considered, and what criteria was used to

decide among alternatives.

To highlight the variation points that relate user

decisions to system features we use the Task notation

from the i* framework [6].

4. Variability Design

Defining variation points is essential for creating a

product family that is flexible enough to accommodate

always-changing customer needs. Variability needs to

be captured from the early stages of requirements

definition, further analyzed during architecture and

detailed design, and identified for runtime and user

decisions.

We introduce decision boundaries at each stage,

discussing their placement along with some of the

benefits and tradeoffs.

4.1. Decision Boundaries

Increasingly the variability in systems is moved

from mechanics and hardware to software. The product

family architecture must be designed in such way to

support different products, particularly when special

configurations of the software components are

required. However, because of the high cost of

reversing design decisions, software engineers attempt

to postpone such decisions to the latest phase in the

product development. Over the last few years many

organizations have identified conflicts in their software

development because of the constantly increasing

number of features a product must have to better

service the various market segments [8].

Some of the features available in the final product

are left open for users’ decision. Modeling these

decisions into goals and translating them into

subsequent features gives no clear demarcation of the

magnitude of variability in user decisions. We

introduce decision boundaries (dashed line in Figure 1)

to augment the space of user alternatives by depicting

goals which correspond to product features whose

usage will be deferred to a later stage and ultimately

determined by the user.

Figure 1. Decision boundary

The decision boundaries will assist in analyzing and

establishing the point where detailed design decisions

and constraints are loosened and the user can make a

selection from an already available range of features.

For instance, in a healthcare scenario [9], patients

have requested messaging communication with their

physicians. Sending messages in this case proved to be

a viable alternative to satisfy the requirement.

Sending messages (Figure 2) depends on the Type of

message, which can be Instant if the communication is

done on-line or Deferred, when the communication is

done off-line. It also depends on the sender’s Location,

which can be Static or Dynamic, depending on whether

or not the user is in motion.

The corresponding feature model (Figure 3) outlines

two main alternatives in the final product: On-line or

Off-line communication.

However, the study [9] mentions a conflict of

preferences among stakeholders. Patients opted for On-

line, being more concerned with obtaining real-time

response, yet physicians’ preferred Off-line because it

would allow them to read and respond to patients’

questions without being interrupted from other

consultations.

Figure 2. Decision boundaries in goal

models

In Figure 2 we note the two places where a

boundary was introduced. At requirements definition

the boundary signifies that the final product will have

both On-line and Off-line features, and all the sub-

features will be left open for user’s decision. This will

subsequently increase production costs, which may not

be fully justifiable for all markets. In contrast, if only

one feature will be made available, for instance Off-

line, it may diminish the ability of the product to satisfy

various markets.

Goals determined during architectural design, such

as having the ability to Connect to Network, or Have

Reminder and Track Messages, actually translate to an

entire set of features in the final product, such as the

existence of wired or wireless network capabilities, a

Text or Audible reminder, and tracking the Delivery

and/or Message Read, when the message was delivered

to and/or read by the recipient.

Therefore some decisions may be deferred from the

requirements definition to a later stage (Architectural

Design dashed line in Figure 2). In this case only a

smaller set of features in the final product will be left

open (Architectural Design dashed line in Figure 3).

Figure 3. Decision boundaries in feature

models

Subsequently, the production costs will not be as

high as when the boundary was placed at the

requirements definition.

This is not to say that placing decision boundaries as

late as possible in the product development and

subsequently leaving fewer features open is

recommended. Rather understanding where to place

these boundaries, what are the consequences and trade-

offs, and how the open features will influence the

ability of the final product to satisfy various markets, is

the key point in introducing decision boundaries in

variability analysis.

In the following sections of the paper we depict and

discuss decision boundaries at various stages in product

development.

Decision boundaries can be introduced as early as

the requirements definition stage.

4.2. Decision Boundaries at Requirements

Definition Stage

Requirements are not stable; new or variations of

the existing requirements are continuously added. The

final product becomes efficient if it is designed to

accommodate the possible variations in requirements.

Documenting variability and making decisions at this

stage is necessary due to numerous requirements rising

from multiple stakeholders and their preferences,

products, releases, quality constraints, and other

specific criteria, such as country or region restrictions.

For instance, in the healthcare scenario [9]

previously introduced, because of the conflict of

preferences among stakeholders, whereby patients

preferred on-line communication for real-time response

and physicians opted for off-line, not to be interrupted

from other consultations, we can place the decision

boundary after the message Type, allowing the user to

determine whether he/she will be conducting instant or

deferred communication (Figure 4).

Figure 4. Requirements definition decision

boundary – goal model

This reflects in the feature model (Figure 5),

allowing us to note that all the features necessary for

communicating online or offline will be left open.

If the final product will have the Messenger On-line,

all the features will have to be made available to the

user and this will influence subsequent architectural

and design decisions. For example, the Typing (Figure

3), done by the use of Stylus or Keyboard, affects how

instantaneous communication is conducted, because

users may only be accustomed with one of the features.

As well, the various display sizes are hardware

variants, each of them requiring a specific display

driver [10]. In other words, the software in the final

product may have to incorporate variation points to

support different display sizes.

Figure 5. Requirements definition decision

boundary – feature model

Accurate identification of decision boundaries

during the requirements gathering phase influences

subsequent architectural and detailed design decisions.

4.3. Decision Boundaries in Architecture

Design

A family of products structures its architecture

around major commonalities that can be implemented

as prefabricated components. Each product is derived

from the product family architecture, by using a set of

generic components and introducing product-specific

code [11].

The variability determined at the requirements

gathering phase maps into variability that can be

defined at the time of architecture design. At this stage,

identifying decision boundaries assists in outlining

different possible architectures and supports impact

assessment from the perspective of changes that are

required in the product family.

For instance, hemodialysis systems have two

communication ways [12]: Push connection – the

hemodialysis machine sends updates to the external

system; and Pull connection – the system requests

updates from the hemodialysis machine. Figure 6 and 7

depict the goal and feature models.

Figure 6. Update info – goal model

Figure 7. Update info – feature model

Either approach will satisfice the goal of updating

treatment information, yet there are trade-offs. If the

information is pushed, the hemodialysis machines may

require complex modifications, considering the wide

range of products on the market. If the information is

pulled, software components have to be developed for

the system to extract the information without exposing

the patient to any hazards.

While it may be easier to define a single architecture

for a product, in the case of product families each

variation point indicates a possible change in the final

architecture.

4.4. Decision boundaries in Detailed Design

Variability analysis and decision boundaries at this

stage enable designers to establish alternatives in

product specifications and identify possible solutions

up-front, without sacrificing any of the qualities of the

final product. It also provides the opportunity of

reusing components, saving costs and time, when

creating new products. Leaving design decisions open

allows for future requirements to be met without

starting from scratch.

For example, in Figure 3 we note that the final

product may have Wired or Wireless network

connectivity. The type of wireless connection, Wi-Fi,

Bluetooth, or MANET, can be determined at detailed

design time. The decision boundary identifies which

product features are left open to meet various

requirements.

Another example is an Alarm feature which can be

enhanced at detailed design time with built-in

intelligent decision-making algorithms. Based on

parameters such as history of events, Notification Type,

or Alarm Intensity/Urgency, the algorithms will

‘decide’ the Notification Subject, Notification

Location, and/or Notification Process that will require

immediate or delayed attention (Figure 8).

Figure 8. Activate alarm – goal model

The higher-level variation points entail more

influence on the detailed design than the lower-level

alternatives. For instance, the Alarm Intensity can be

Low, Medium, or High yet the final design does not

significantly change, whereas how the notification is

triggered, through the selection of Notification Type

and alarm Intensity and Urgency, will have a stronger

impact on the final product (Figure 9).

Figure 9. Activate alarm – feature model

During requirements definition and architecture

design it may also be necessary to establish

contingency and/or emergency plans. The resulting

decisions will bring further goal refinements and

subsequent changes to the detailed design.

4.5. Decision Boundaries at Runtime

One of the main contributions of a family of

products is its focus on domain-specific architectures,

providing a systematic derivation of a tailored

approach, suited to the capabilities and objectives of a

type of corporation. However, many domains impose

requirements for domain-specific customization that

can hardly be implemented with variation points that

are bound before runtime [11].

In user-adaptive systems, the behavior of the system

is determined at runtime, based on user characteristics

and preferences. These are domain-specific variation

points that can be dynamically actualized through ad-

hoc system customization done by domain experts. To

reach their goals, it is important for domain experts to

be able to understand the product variability and make

decisions without having to learn about other parts of

the architecture.

Goedicke et al [11] discuss the situation of a large

warehousing organization with multiple different media

shop types, such as web shops, interactive television

shops, and m-commerce shops. In this context we have

multiple requirements for runtime variability. For

instance, Personalize Shopping – the website can be

personalized via a form-based or graphical interface

(Figure 10).

Figure 10. Personalize shopping – goal model

Domain experts can select from a list of available

options – predictive menus, nested menus, etc – or use

a ‘canvas’ to paint the website to match market

preferences. The personalization information is then

stored on the server which in turn generates

personalized pages for different content formats

(Figure 11).

Figure 11. Personalize shopping – feature

model

A similar example of runtime variability is the

customization of interactive applications which is done

by domain experts and content providers via an

interface that generates web forms or applets. The

parameters are handled by content editors and the

customer should not experience the common product

line realization during shopping, rather should have the

impression that each shop has an individual

appearance.

The main trade-offs are driven from the fact that

while domain experts have adequate knowledge about

the market, they still have to foresee the users’

preferences, which may differ from one context to

another. This, in turn, entails the availability of

more/less features in the final product to meet the

users’ preferences. Placing decision boundaries helps

identifying which features should be left open and

which should be fixed, thus eliminating redundancy.

Figure 12. Moving the decision boundary

If the decision boundary is lowered such that only

Predictive Menus and Nested Menus will be left open

(Figure 12), then the higher level feature Graphical

Interface becomes fixed, disallowing customization of

the website color, fonts, and other such attributes, or

even completely removed, with possible subsequent

reduction of development costs.

4.6. User Decision Boundaries

Building complex architectures for product families

raises the issue of specific customizations that have to

be incorporated to satisfy various markets. For each

customization a certain programming effort is required.

Often, initially found variation points do not match the

reality of users’ preferences. If these variation points

are not resolved, it may become difficult to customize

products that require rapid changeability.

Identifying and modeling variability at the time of

architecture and detailed design does not define which

features in the final product are left open for user’s

selection and how they relate to the higher level goals.

While architectural and detailed design variations are

considered in the early phases of product development,

some alternatives will eventually be left for users to

consider. These alternatives are features which have

been included in the final product yet their usage will

be determined by the user.

For example, from a user perspective, a mobile

device should allow selection of services, such as

networks, servers, or other mobile devices. Hence, the

user should be able to search for services by Location,

Category, or Key-words [13] (Figure 13).

Figure 13. Selection of services

The ability to choose a service is the user’s high

level goal and from a system perspective this translates

into Search Available Services. The tasks By Location,

By Category, and By Key-words depict the alternatives

provided by the system, allowing the user to choose

his/her preferred way.

Expanding this requirement further, reveals the

necessity to customize the search and save the search

results into a list format, or other formats, such as

open-search, that can be viewed at any time, either by

Location, Category, or Key-words (Figure 14).

Figure 14. Selection of services – refined

An additional requirement is to have the ability to

transfer the search lists to either a server or another

mobile device [13]. To allow the user to perform these

functions, the system will provide a graphic interface

through which the user will input the search

parameters, view and customize search requests, as

well as store and transfer the search results. The system

will provide access to the requested services when the

mobile device and the appropriate service are co-

localized – when a connection is possible [13]. This

implies the ability to search for services as well as the

existence of a certification mechanism to support

security requirements, such as authentication and

authorization.

Figure 15. Service connection

The security services, authentication and

authorization, are provided within the Service

Selection. The system architecture in this case would

have an End-User Authentication Interface responsible

for access control and identity management. Therefore,

Service Selection will communicate with this interface

for connection to other services, such as networks,

servers, and PDAs. As well, management of lists

should be done in a separate module, because of the

variation of services and connection types – servers,

PDAs, other mobile devices, Bluetooth, Wi-Fi,

MANET, etc.

The system must support interaction between

different services and should keep track of all services

to which the user’s mobile device has been connected

[13]. Keeping track of connections can be

accomplished either by introducing functionality in

Service Management or by having a separate

mechanism for audit. The latter, however, would

significantly modify the design. Most system designs

take the approach of activities logging and audit as a

separate functionality. Therefore, the system

architecture may encompass an Audit Manager feature.

The decision boundary can also be placed as

depicted in Figure 16.

Figure 16. Service connection – different

placement of the decision boundary

In this case, some of the features that were

previously left open for the user are now fixed. For

instance, Manage Lists and Transfer List are no longer

determined by the user. Only how the lists are managed

and where they are transferred remains open.

Lowering the decision boundary gives less

opportunity for users to determine how and when the

product features will be utilized and at the same time

decreases the flexibility of the product and its ability to

fully satisfy various markets.

4.7. Decision Boundaries and Softgoals

Gonzales-Baixauli, Leite, and Mylopoulos [4] state

that goal analysis has to combine quantitative with

qualitative techniques to account for subject matters

that are not readily quantifiable. The analysis of the

interaction of non-functional softgoals and functional

goals at a high level of abstraction is an important

element, especially when designing variability.

We propose the analysis of how decision boundaries

and the variability of goals influence softgoals and their

achievement, allowing early identification of variation

points in the product architecture.

For example, Liu, Yu, and Mylopoulos [14] state

that security issues are about relationships between

social actors – stakeholders, users, etc. – and the

software acting on their behalf. Let us consider

Security, Accountability, and Anonymity as softgoals

that need to be satisficed through the introduction of

Protection Mechanisms (Figure 17).

Figure 17. Protection mechanisms

Some subgoals can be Firewall, Anti-malware,

Authentication/Authorization, and Auditing. If we

place the decision boundary as shown in Figure 17, we

note that the subgoals Help and/or Hurt the softgoals.

For instance, the presence of the Auditing and the

Authentication/Authorization mechanisms, while

helping Security, hurts Anonymity.

However, if we further refine the subgoals and move

the decision boundary, we note that there are

alternatives to satisfice both Security and Anonymity

(Figure 18).

Figure 18. Protection mechanisms – refined

Using Secure Certificate(s) for user authentication

can have only Some– (negative) impact on Anonymity,

or virtually no impact if third party certificates are

used, for instance public and/or private keys. As well,

collecting only anonymous information through light

usage of cookies has only Some– impact and therefore

the softgoal of Anonymity can be satisficed. Using

cookies however has only a small contribution

(Some+) to Security. Nevertheless, considering that the

other goals have a significant contribution – Help –

satisficing Security, then the usage of cookies might be

an acceptable tradeoff.

5. Conclusions and Future Work

When considering different options, stakeholders

need to understand how each option will impact their

work and pursuit of the project and personal goals [15].

This will help them choose the design that better meets

their needs and interests. Decision boundaries permit

in-depth analysis of the stakeholder goals and product

features. They depict the variability magnitude and

allow easier identification of goals and corresponding

features that will be deferred to later stages in the

product development

We have introduced and briefly discussed decision

boundaries in variability analysis, at various stages in

the product development cycle, and sketched the

analysis of decision boundaries’ influence on softgoals.

Our paper complements earlier works on the goal-

model based approach to variability. We use the OR-

decomposition of goals [2], adapted to depict

variability in highly customizable software, and the

decision-making process for software design [5], which

allows identification of alternative functionalities that

will satisfice stakeholders’ goals, and enhance them

with decision boundaries for a clear depiction of the

extent of variability.

Further work is required to refine the decision

boundaries and provide a better understanding of their

placement to support product analysis and design,

including design trade-offs and influences on softgoals

variability. We endeavor to establish precise rules for

setting a boundary and how far a boundary can go,

examine the connections between boundaries, and

define a meta-model and the associated procedures for

using it. We will also explore further how the decision

boundary concept can be used to aid in the derivation

of feature models from goal models.

As well, due to the potential growth of models, there

will be a need to develop tools to manage the large

scale models, such as visualization and navigation aids

that will provide selective views of portions of the

overall graph and the queries to generate such views

from an underlying formal representation.

Furthermore, requirements conflict is an important

aspect in requirements engineering research [16].

Stakeholders often have divergent interests that can

drive the final product design in different directions

and multiple points of view lead to overlapping

requirements that do not always agree [16]. Decision

boundaries can play an important role in conflict

analysis.

6. References

[1] F. Bachmann and L. Bass, “Managing variability in

software architectures”, Symp on Software Reusability:

Putting Software Reuse in Context, 2001, pp. 126-132.

[2] S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, and J.

Mylopoulos, “On goal-based variability acquisition and

analysis”, 14th IEEE Int’l Requirements Eng Conf, 2006.

[3] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B.

Ramesh, and A. Vidbig, “A meta-model for representing

variability in product family development”, Springer-Verlag

LNCS 3014, 2004, pp. 66-80.

[4] B. Gonzalez-Baixauli, J. Leite, and J. Mylopoulos,

“Visual variability analysis for goal models”, 12th IEEE Int’l

Requirements Eng Conf, 2004, pp. 198-207.

[5] Y. Yu, J. Mylopoulos, A. Lapouchnian, S. Liaskos, and J.

Leite, “From stakeholder goals to high-variability software

design”, Tech. Rep. CSRG-509, Canada, Ontario: University

of Toronto, 2005.

[6] E. Yu, “Towards modelling and reasoning support for

early-phase requirements engineering”, 3rd IEEE Int’l Symp.

on Requirements Eng, 1997, pp. 226-235.

[7]. K. Czarnecki, and S. Helsen, “Classification of Model

Transformation Approaches”, OOPSLA’03 Workshop on

Generative Techniques in the Context of Model-Driven

Architecture, 2003.

[8] M. Svahnberg, J. van Gurp, and J. Bosch, “A taxonomy

of variability realization techniques”, Software – Practice &

Experience, 35(8), 2005, pp. 705-754.

[9] A. Tjora, T. Tran, and A. Faxvaag, “Privacy vs. usability:

a qualitative exploration of patients’ experiences with secure

internet communication with their general practitioner”,

Journal of Medical Internet Research, 7(2), 2005, e15.

[10] M. Jaring, and J. Bosch, “Variability dependencies in

product family engineering”, Springer-Verlag, LNCS 3014,

2004, pp. 81-97.

[11] M. Goedicke, K. Pohl, and U. Zdun, “Domain specific

runtime variability in product line architectures”, 8th Int’l

Conf on Object-Oriented Information Systems, 2002, pp.

384-396.

[12] P. Bengtsson, and J. Bosch, “Haemo dialysis software

architecture design experiences”, 21st Int’l Conf on Software

Eng, 1999, pp. 516-525.

[13] V. Bryl, P. Giorgini, and S. Fante, “ToothAgent: a

multi-agent system for virtual communities support”, 2005.

[14] L. Liu, E. Yu, and J. Mylopoulos, “Analyzing security

requirements as relationships among strategic actors”, 2nd

Symp on Requirements Eng for Info Security, 2002, pp. 1-14.

[15] E. Yu, and J. Mylopoulos, “Understanding ‘Why’ in

software process modeling, analysis, and design”, 16th Int’l

Conf on Software Eng, 1994, pp. 159-168.

[16] E. Yu, and J. Mylopoulos, “Why goal-oriented

requirements engineering”, 4th Int’l Workshop on

Requirements Eng: Foundations of Software Quality, 1998,

pp. 15-22.

