

Understanding the Strategic Actor Diagram: an Exercise of Meta Modeling

 Julio Cesar Sampaio do Prado Leite Vera Maria B. Werneck
 PUC-Rio (Brasil) UERJ (Brasil)

 www.inf.puc-rio.br/~julio www.ime.uerj.br/~vera

 Antonio de Padua Albuquerque Oliveira Claudia Cappelli
 PUC-Rio (Brasil); UERJ (Brasil) PUC-Rio (Brasil)

 padua@inf.puc-rio.br ; padua@ime.uerj.br ccappelli@inf.puc-rio.br

 Ana Luiza A. Cerqueira Herbet de Souza Cunha Bruno Gonzalez-Baixauli
 PUC-Rio (Brasil) PUC-Rio (Brasil) Universidad de Valladolid (España)
 analuiza@inf.puc-rio.br herbet@inf.puc-rio.br bbaixauli@infor.uva.es

Abstract

i-star (i*) modeling uses the actor concept to ground
the intentions of a given Universe of Discourse. Our work
contributes to the understanding of the actor concept as
used in i*. We have used a collaborative approach to
better understand the actor concept. The authors met 9
times to discuss the topic. The goal was to discuss i*
meta-models, which was later specialized to discuss actor
modeling. After the meetings and after one week of
collaborative work using a collaboration based editor,
“Writely”, we have agreed on presenting our model from
two different perspectives, but both using UML as the
meta language. We understand that these models,
designed by consensus, represent what we have labeled
the SA Diagram or the Strategic Actor Diagram. The
article presents the models we have arrived as well as the
process we have used. We believe that making this
process transparent will help to shed light not only on the
concept of actor, but on the process of meta-modeling as
well.

1. Introduction

i* modeling has attracted the attention of the
requirements engineering community since its proposal
by Eric Yu´s dissertation thesis [25]. Several researchers
 [8] [21] [6] [17] did see it as a way of modeling early
requirements. In the context of information systems
 [17] [6] [21] [7], i* is viewed as a way of modeling the
organization and theirs actors intentionality. In the
context of multi-agent systems, it is viewed as the initial
step towards agent specification [10] [4] [20] [18] [9] [5].
Yu´s keynote address at WER 2006 [2] was entitled

“Social Modeling in Requirements Engineering – Why,
Where, and How”, stressing the fact that i*, despite being
first named after the idea of distributed intentionality, has
been more and more perceived as a social modeling
framework.

Embarking on this direction, of a social modeling
framework, it is master to underpin a central concept: the
concept of actor. The idea of actor modeling is not new,
and Carl Hewit [14] was one of the first to use it as a
modeling concept. We understand that in order to proper
model organizations, actor modeling is fundamental. In
this work we concentrated our focus on i* itself [25] and
on the work performed around i*.

As stated in the abstract, we started our work aiming at
a meta-model for i*, but later on, decided to focus on the
actor part. In order to pursue our goal of better
understanding this concept, we used a process based on
meetings. We conducted 9 meetings, most of which were
based on analyzing published i* meta-models. Most of
these models were written in UML, but two of them were
written in Telos [19]. Yu´s thesis was the primary source
of information as to ground our review of the published
models as well as on the proposal of our own model.

We believe that making this process transparent will
help to shed light not only on the concept of actor, but on
the process of meta-modeling as well. Since our long term
project is one of improving software transparency [16],
we understand that actors should be modeled in a
transparent way. The description of our group’s work is
an exemplar of the ways to explore transparency, as well
as the roadblocks that have to be faced in trying to do so.

We start describing the overall process (Section 2),
and then we focus on the comparison of previous
published models (Section 3). Section 4 discusses two
models we have worked with. Section 5 presents our
proposed model. We conclude with a section on lessons

learnt and with some open questions we believe do
remain (Section 6).

2. A Collaborative Process

Working as a group is challenging [11]. Several work
have been reported on the topic of computer support
collaboration, from work on identifying mechanisms to
help collaboration [14] to work that discuss collaboration
models [12]. It is not our goal to contribute to this line of
research, but to report on the strategy we have used.

The basic elements of our process were meetings,
literature review and model building. Eight people,
overall, were involved. We have used different sorts of
tools, from graphic editors to collaborative editing [13].
Central to our work, outside the meeting room, was the
use of group support software provided by Yahoo [23],
where we shared messages and files. We shared around
70 messages and 20 files. The SADT below describes the
overall process.

PLAN was performed at each meeting, deciding on
what to do for the next meeting. Due to the evolving
characteristic of our group work, we needed to foresee
what was to be done next as to adjust our work to the
conclusions of each meeting.

PREPARE was needed to enhance the work. It was
done outside the meetings either individually or in
group. Based on the agenda set forward by the end of
each meeting, people would perform their homework,
which was basically literature review and model building.

DISCUSS was performed at the meetings trying to
achieve consensus within the group. We mostly worked
on trying to understand the model being discussed. We
started with complete i* models, but, later on, we decided
to focus just on the actor part. Besides the models
prepared by others, we have reviewed several models
built by our group.

 We started discussing i* concepts in general with the
goal of sharing the knowledge of i* among the group.
After reviewing a meta-model produced by one member
of the group, we decided to look for other such models in
the literature. In subsequent meeting we discussed
several of those models presented in the literature, but
focused on the ones using UML as a meta-language. In
these discussions we needed to go back to the UML
definition [22] as to better understand its capabilities and
limitations as a meta-modeling language, which is not an
easy task given the volume of information on the
definition document. After spending a whole meeting
discussing the meta-language as well as the target of our
modeling activity we have decided to build a table
showing the similitude and differences among the models

At the fourth meeting, as we discussed the contents of
the comparison table, it was clear to us that in order to
make progress, we needed more focus. We decided to
focus on modeling the concept of actor. So, at the end of
this meeting, we planed to reduce the scope, and work
only with the actor part. This part of the model contains
relationships among actors, roles, positions and agents.
Figure 2 provides an example of an actor diagram as seen

Figure 1: SADT describing the overall process of used strategy

Figure 2: Actor Diagram for a Software Engineering Organization - adapted from [25] pp 99

in Yu´s thesis.
At the fifth meeting we had started with a new

comparison table, focused on four meta-models; three
from the literature and one from our own. All the other
meetings were aimed at producing the actor diagram
meta-model. We elected the thesis [25] as the central
information source to base our elicitation strategy. No
other articles from Yu were used. This part of the work
created a lot of discussion in the group because of
the different participants visions and especially because
of the parts-of relationship among roles, positions and
agents, since there was a proposal to use the composite
design pattern as to base the parts-of meta-modeling.
After revisiting the discussion on composition and
aggregations we decided not to use the design pattern

version. Around eight different UML meta-models were
discussed until we reached a consensus. The result of
each discussion is represented by the “Feedback” arrow
in the SADT (Figure 1).

3. Comparison of Previous Models

We have looked at different literature [3] [20] [4] [24]

 [1], but focused our comparison on the first three models.
One was discarded because the model was the same of a
previous publication, and other was discarded since it did
not use UML as a meta-model [24]. We compared these
models with the one produced by one of us as we started
our work (Figure 6). See Figure 3, 4, 5 and 6 below.

Figure 3: Model from Ayala et al. [3]

Figure 4: Model from Susi et al. [20]

Figure 5: Model from Bertolini et al. [4]

ACTOR Agent

Position

Role

occupies

covers

plays

11 is an

1 ..*

0 ..*

1 ..*

0 ..*

0 ..*

1 ..*

Figure 6: Our initial model

All the first three models have the specialization
relationship from Actor; our initial model had only the
specialization related to Agent. Ayala et al. [3] added the
constraint {Disjoint, incomplete} over the Actor
specialization. We targeted our comparison on 4
relationships:

• Relation Cover (Position → Role)
• Relation Plays (Agent → Role)
• Relation Occupies (Agent → Position)
• Relation Part of (Actor → Actor)

As Table 1 shows, there is no agreement over
multiplicity as seen by these authors. It also shows a
relationship, parts-of, among actors, that was present at
just one model. In the next Section we comment on the
intermediary models we have built in the process of better
understanding the actor concept.

4. Working (Draft) Models

Most of our discussions (see Figure 1, DISCUSS)

were regarding the multiplicity of the mapped
relationships.1 The discussions were based in the
examples shown in Yu’s thesis [25] and on the Telos
definition of the i* classes as in the thesis. Figures 7 and 8
depict two of the intermediary models we had scribbled.
Figure 8 is basically a different modeling perspective,
where the relationships are modeled explicitly.

1 As seen on Table 1, our initial model (Figure 6) did not treat the “Part
of” relationship, so one of our first attempts was to look into this issue.
Our discussions led to Figure 7, whereas this issue is treated.

Figure 7 is a more standard UML model that shows the
parts-of relationships as composition. The specialization
relationship is represented in two forms, with the special
UML symbol and with the annotated relationship IsA.
This reflects the difficulty to find out a good enough
representation of “is-a-kind-of” (is a) relationship
concerning actors, agents, positions, and roles. The
specialization semantic in UML is not the same that is
used in i* framework. Agents, positions, and roles are
represented in i* framework as an actor refinement which
is not exactly a specialization in UML sense.

Table 1: Comparison Table

Relationship Ayala
 [3]

Susi
 [20]

Bertolini
 [4]

Our initial
model

Position covers
Role

... 1 ... 1,n 1 ... 0,n 1,* ... 0,*

Agent plays
Role

* ... * 0,n ... 1,n 1 ... 0,n 0,* ... 1,*

Agent occupies
Position

* ... * 0,n ... 0,n no
multiplicity

0,* ... 1,*

Part of
(Actor→Actor)

... does not
have

does not
have

does not
have

Figure 8.b shows the relationships as classes. We used

the same scheme as used in the UML meta definition [22]
to represent the relationships. This model stresses the
multiplicity and factors out the relationships.

In order to represent the “instance” relationship among
agents we preferred to add a class called “real agent”. In
this way we explicit state that only real agents can
instantiate agents. At this point we decided to work with
two meta-models, the first one more concise giving

Figure 7: Intermediary Model Using UML Specialization and Aggregation

emphasis on actors, agents, positions, roles elements and
the other one giving importance to the relationships
representing them as UML classes, in the same way as
elements.

5. Proposed Models

Figures 9 and 10 depict our understanding of the actor
concept as a consequence of our discussions, which

departed from the evaluation presented at Figure 1. We
choose to present both as different visions, of the same
understanding. They are richer than our previous models
(Figures 6, 7 and 8), as well as from the models we found
in the literature (Figures 3, 4 and 5).

In this Section we summarize our findings for each
concept we model, present the models and provide the
rationale for the concepts, relationships, and multiplicity

Node

Goal Softgoal Task Resource

Agent Position Role

RealAgent

Actor

(a) Nodes classes

Agent

Position Role

RealAgent

CoverLink

PlayLinkOccupyLink

IsALink PartOfLink

InstanceLink

IsALink

PartOfLink

IsALink

PartOfLink

major

*1
sub

1

super
1*

minor

*1

1

super

1
*

sub 10..1

major
*

1
minor * 1

super

1
*

sub1

minor*1

major*
1

*

*

**

*
*

1

1 1

11

1

1

Instance_of1

*
super != sub

super != sub

major != minor
major != minor

major != minor

super != sub

0..1

0..1

(b) Relationships (between nodes) represented by classes

Figure 8: Intermediary Model Using Classes to Represent Relationships

we have modeled. Theses parts follow as different Sub-
Sections.

5.1. Concepts

The concepts were captured from Yu’s thesis [25]. The
relationships are commented with respect to their
multiplicity as used in our proposed models.

Actor : “An actor is an active entity that carries out
actions to achieve goals by exercising its Know-how”
 [25], pp 12. “We use the term actor to refer generically to
any unit to which intentional dependencies can be
ascribed” [25], pp 17. We consider actor as a super class
for agent, position and role.

Position : “A position is an intermediate level in
abstraction between a role and an agent. It is a set of roles
typically played by one agent (e.g., assigned jointly to
that one agent). We say that an agent occupies a position.
A position is said to cover a role.” [25], pp 17.

Role : “A role is an abstract characterization of the
behavior of a social actor within some specialized context
or domain of endeavor. Its characteristics are easily
transferable to other social actors Dependencies are
associated with a role when these dependencies apply
regardless of who plays the role.” [25], pp 17.

Agent : “An agent is an actor with concrete, physical
manifestations, such as a human individual. We use the
term agent instead of person in order to generalize, so it
can refer to human as well as artificial
(hardware/software) agents. An agent has dependencies
that apply regardless of what roles he/she/it is playing.
These characteristics are not typically transferable to
other individuals, e.g. its skills and experiences, and its
physical limitations.” [25], pp 17.

Real Agent : As said before, we differentiated real
agent from agent to clarify that an agent (more generic)
must be instantiated by real agent (more specific). So, a
real agent is a specific agent that can be uniquely
identified, e.g., a specific a person or a specific hardware
or software.

Instance : It relates real agent with agent. We consider
that a real agent can instantiate exactly one agent and one
agent can be instantiated by zero or more real agents.

Cover : It relates position with role. We consider that a
position can cover zero or more roles as well a role can be
covered by zero or more positions. Although it seems odd
to have a position without covering any role (or a role that
is not covered by any position) in some cases is desirable
to work just with positions and do not care about the roles
and vice-versa.

Play : It relates agent with role. We consider that an
agent can play zero or more roles as well a role can be
played by zero or more agents. Although it seems odd to
have an agent without playing any role (or a role that is
not played by any agent) in some cases is desirable to

work just with agents and do not care about the roles and
vice-versa.

Occupy : It relates agent with position. We consider
that an agent can occupy zero or more position as well a
position can be occupied by zero or more agents.
Although it seems odd to have an agent without
occupying any position (or a position that is not occupied
by any agent) in some cases could be desirable to work
just with agents and do not care about the positions and
vice-versa.

Part of : Roles, positions and agents can each have
subparts. “Aggregate actors are not compositional with
respect to intentionality. Each actor, regardless of whether
it has parts, or is part of a larger, whole is taken to be
intentional. Each actor has inherent freedom and is
therefore ultimately unpredictable. There can be
intentional dependencies between the whole and its parts,
e.g., a dependency by the whole on its parts to maintain
unity.” [25], pp 17. We consider that roles, positions
and agents, can have zero or more subparts as well can be
taken as a subpart of zero or more roles, positions and
agents respectively. In the case of positions there is a
restriction: a position P1 is (sub) part of another position
P2 if, only if, all the roles covered by the position P1 are
also covered by the position P2. We do not consider the
relation part-of as applied to Actor, as did the model at
Figure 3.

Is a : Actors, roles, positions and agents can be
specialized. We consider that actors, roles, positions and
 agents, can be specialized by zero or more actors, roles,
positions and agents respectively as well an actor, a role,
a position and an agent can specialize zero or more actors,
roles, positions, and agents respectively.

5.2. Models

As explained above, the model of Figure 9 used the
UML special symbols for the generalization and
aggregation associations. Since we need to use an ISA
association with a particular semantics, we named it as an
association, and where the case, we refrained to use the
UML special symbol.

The model of Figure 10.c is formed by two groups of
meta-classes: nodes meta-classes and links meta-classes.
The nodes meta-classes (Figure 10.a) represent the key
concepts in a SA model: actor, agent, position, role and
real-agent. The links meta-classes (Figure 10.b) represent
the different types of relationship between key concepts.
We use a different link meta-class for each possible
relationship in a SA: instance link, cover link, play link,
occupy link, is-a link and part-of link. Like all the links
are directed in a SA model, and connects exactly two
different nodes, we named the two correspondents

associations in the link meta-classes as “from” and “to”2.
The restriction that a link can not connect an element to
itself applies for all types of links. In fact, by the nature of
the relationships between actors represented in SA model
it does not make sense that any actor (in any level of
abstraction) could have a relation to itself. For instance,
stating that actor A plays a role of actor A.

5.3. Rationale

All relationships we proposed were defined in [25], pp
17, and for the multiplicities we based our choice in
examples found in the thesis [25].

In our model we defined that a Position can cover zero
or more Roles and the Roles can be covered by zero or
more Positions. The example of Strategic Dependency
model of a software engineering process (Figure 2)
presents the justification for the zero or more Positions
and the more Roles. A Technical Task Role is defined
covering any Positions. As we defined as a restriction
rule, if a position P1 is part of other position P2 by
definition all roles of P1 covers also P2. So the Test Team
Position and the QA Engineer Position covers the Testing
Unit Role, because the Test Team Position is a part of the
QA Engineer Position. The QA Engineer Position is
covered by the Roles Modifying Test Plan and Modifying
Test Pkg. An example of Position defined without any
Role can be found in the Figure 2.5 [25], pp 103, where

2 The labels “from” and “to” are indicative of the relationship direction
and were used as to improve the labels used in Figure 8.

the Project Manager Position is defined showing only the
dependency on the Designer Agent without any Roles to
be covered by this Position.

An Agent can play zero or more Roles and Roles can
be played by zero or more Agents. In the example of
Strategic Dependency model of a software engineering
process (Figure 2) we can find these situations. The Team
Member Agent plays the Technical Task Role, the
Software Management Professional Agent does not play
any Role and the Scheduling Assign Role has no Agent
associations. In the Figure 2.5 in [25], pp 103, the
Designer Agent plays the Designing Role and the Tester
Agent plays the Testing Role. The Designer and the
Tester Agents are part of the Tech Team so we can infer
that the Tech Team Agent can also play the Designing
and the Testing Roles, so those two roles can be played
by two different agents.

An Agent can occupy one or more Positions and we
also defined that a Position can be occupied by zero or
more Agents. The example of Agents, Roles and
Positions in Figure 2.8 in [25], pp 24, shows the
Physician Person Agent that occupies two Positions:
Professor Position and Physician Position. We can also
define a domain that has two Agents (Physician Person
and Nutritionist Person) with a same Position (Professor
Position). The example of Strategic Dependency model of
a software engineering process (Figure 2) shows the
Team Member that that has no positions associations and
the QA Manger Position that has no agents associations.

occupies

covers
0..*0..*

0..*
Agent Role Position

ACTOR

0..*0..* plays

RealAgent

0 ..*

0..*

0..* 0..* 0..*

isa

0..* 0..* 0..*

{child != parent }{child != parent }{child != parent } child

parent parent

child

parent

child

A position P2 is part
 of another position P1
 if, only if, each role

 covered by P2 is
 also covered by P1.

0..* 0..* 0..*

0..* isa

{child != parent }

parent

child0..*

ins 1

isa isa 0..*0..*0..*

Figure 9: Proposed Model Using UML Specialization and Aggregation

(a) Nodes meta-classes

(b) Relationships meta-classes

(c) Model using relationships meta-classes

Figure 10: Proposed Model Using Classes to Represent Relationships

A Real Agent can instance exactly one Agent but an

Agent can have zero or more Real Agent that instances
this Agent. The example of Strategic Dependency
model of a software engineering process (Figure 2)
presents the Judy and Jeff two Real Agents that
instance the Software Professional Agent. In the same
example we find the Team Member Agent that has no
Real Agent associations.

An Agent is a part of zero or more Agents. The
example in the Figure 7.3 in [25], pp 103, presents that
the Designer Agent and the Tester Agent are part of the
Tech Team Agent. In the Figure 2, the Design
Specialist Agent is not a part of any Agent.

The Generalization/Specialization relationship
between two Agents (ISA) can also be expressed by
zero or more Agents. Figure 2, presents two Agents,
Design Specialist and QA Specialist, ISA Software
Professional Agent. In the same example the General
Management Professional Agent has no relationship
between other agents.

 A Position is a part of zero or more Positions. The
example on Figure 2 presents that the two Positions,
Review Team and the Tester Team are part of the QA
Engineer Position. In the same example the QA
Manager Position is not a part of any Position and
Review Team Position is part of three Positions (Design
Engineer, Software Engineer and QA Engineer).

The Generalization/Specialization relationship
between two Positions (ISA) can also be expressed by
zero or more Positions. Figure 2 presents the Positions
Design Engineer and QA Engineer as a specialization
of Software Engineer Position. In the same example the
QA Manager Position is neither a generic nor a
specialization of any Position.

A Role is a part of zero or more Roles. The example
on Figure 2.8 in [25], pp 24, presents that the Billing
Role as part of Managing Clinic Role and the Treating
Patient Role is not a part of any other Role.

The Generalization/Specialization relationship
between two Roles (ISA) can also be expressed by zero
or more Roles. The Figure 2 presents the Roles
Modifying Design, Reviewing Design and Modifying
Code as a specialization of Technical Task Role. In the
same example the Monitoring Progress Role is neither a
generic nor a specialization of any other Role.

Although, Yu defined in the i* Meta Model a
CompositeActorClass (Figure 2.4 in [25], pp 18) we
understand that this relationship hurts the principle of
"inherent freedom", as such actor is understand as an
independent entity and not decomposable in other
actors, as seen in the model presented at Figure 3.

The Generalization/Specialization relationship
between two Actors (ISA) can also be expressed by
zero or more Actors. In the example Strategic
Dependency Model of Meeting Schedule, Yu (Figure
4.1 and 4.2 pp 60 and 61 in [25]) defined Important
Participant as a specialization of a Participant. In this

Domain those two actors have relevant dependencies to
be modeled.

6. Conclusions

This paper aims to report, in a transparent way, the

work we have developed to obtain a better
understanding of the actor concept in the context of i*
modeling. Central to this initiative was how the UML
models have evolved as the group discussed the models
and the modeling process. One of our conclusions is
that the actor concept should be treated as a first class
graph as did the Strategic Rationale and the Strategic
Dependency models. From the thesis we are lead to
believe that the actor concept and its relationships
would be accessory to the Strategic Dependency model.
It is our understanding that we should have a Strategic
Actor model as well. We believe that You [24] in a
certain way also reached that conclusion. As such, our
proposed model is a starting point to structure and
discuss a Strategic Actor model.

Our proposed model is different from the previous
ones, as it is more detailed and mostly because it
explicitly states the rationale of the decisions we took
for building the model. Providing this kind of
traceability will help others analyze our model. It is not
our goal to have the last word on the i* actor concept
model, but we understand that we built a solid base to
continue our research on actor modeling. Our model is
less restrictive than others, as can be seen by the use of
the * multiplicity. As such, our model is more flexible,
and we firmly believe this was the intention of the
author [25].

Mapping actors is of fundamental importance to
large organizations, either people organizations or
software organizations. One of the problems we found
on exploring the i* concept of actor is the lack of
support to model hierarchical models. At first, the
parts-of would be the natural candidate, but as we look
further we understood that it could not be the case, as
we explained in the previous Section.

Regarding the process, although we did not aim to
research on collaboration, we realize the difficulties of
working with a large group. We spent a lot of time
discussing supposedly previously known concepts, in
the case of UML, and we faulted as we did not keep the
minutes of each meeting. We rely too much on the
collaborative memory, as we had plans for each next
meeting. This also caused that some discussions
occurred over and over again.

UML modeling is deceiving; it is more difficult than
at first sight. The first author had the opportunity of
reading a draft of Hugo Estrada´s doctoral thesis where
he provides a detailed analysis of i* concepts. There he
uses a more refined ontology (multiplicity, transitivity,
reflexivity, symmetry, homogeneity, work assumption,
shareability, existence dependency …) to categorize
and describe the concepts. As we had chosen UML we

did not addressed all these issues, and as such we had
more difficulty in expressing some of our findings.

We foresee a continuation of our work. We will use
the actor concept in modeling organizations. We will
also thrive to enhance the model with other
characteristics. One such opportunity is dealing with
hierarchies. Other opportunity is exploring what
characteristics would be necessary to model, for
instance, competences and responsibilities of
employees. Providing better models for organization
actors will definitely help in having more transparent
organization models.

Acknowledgements: Bruno González-Baixauli has been
supported by the Spanish government (MEC-FPU grant and by MEC-
FEDER project TIN2004-03145).Julio Cesar Sampaio do Prado Leite
has been supported by CNPq.

7. References

[1] F. Alencar, A. Moreira, J. Araújo, J. Castro, C.T.L.L. Silva, and
J. Mylopoulos, “Using Aspects to Simplify iModels”, 14th IEEE
International Conference on Requirements Engineering (RE 2006),
Sept. 2006, Minneapolis, Minnesota, USA. IEEE Computer Society,
pp. 328-329 (extended version).
[2] F. Alencar, J. Sánchez, and V. Werneck (Ed.), “Anais do
WER06 - Workshop em Engenharia de Requisitos”, Rio de Janeiro,
RJ, Brasil, Julho 13-14, 2006. (http://wer.inf.puc-rio.br/
WERpapers/artigos/artigos_WER06/introducao-indice.pdf)
[3] C. Ayala, C. Cares, J.P. Carvallo, G. Grau, M. Haya, G.
Salazar, X. Franch, E. Mayol, and C. Quer, “A Comparative Analysis
of i*-Based Goal-Oriented Modeling Languages”. 17th International
Conference on Software Engineering and Knowledge Engineering
(SEKE'05), Howard International House, Taipei, Taiwan. July, 2005
[4] D. Bertolini, A. Perini, A. Susi, and H. Mouratidis, “The
Tropos visual modeling language. A MOF 1.4 compliant meta-
model”. AOSE TFG meeting, collocated with the 2nd Agentlink III
Technical Forum (AL3-TF2), Feb. 2005, Ljubljana, Slovenia
[5] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A.
Perini, “TROPOS: An Agent-Oriented Software Development
Methodology”. Journal of Autonomous Agents and Multi-Agent
Systems, May 2004, Kluwer Academic Publishers.
[6] D. Bolchini and P. Paolini, “Goal-driven requirements analysis
for hypermedia-intensive Web applications”. Requirements
Engineering Journal. 9(2) May 2004, Springer, pp. 85-103.
[7] D. Bolchini, P. Paolini, and G. Randazzo, “Adding Hypermedia
Requirements to Goal-Driven Analysis,” 11th IEEE International
Requirements Engineering Conference (RE'03), 2003, pp. 127.
[8] J.F. Castro, F.M.R. Alencar, G.A.C. Filhol, and J. Mylopoulos,
“Integrating organizational requirements and object oriented
modeling,” Requirements Engineering, RE 2001, Fifth IEEE
International Symposium on, 2001, pp.146-153

[9] J.F. Castro, P. Giorgini, S. Kethers, and J. Mylopoulos. “A
Requirements-Driven Methodology for Agent-Oriented Software.”
Agent-Oriented Methodologies, B. Henderson-Sellers and P. Giorgini
(Eds), Idea Group. 2005.
[10] J.F. Castro, M. Kolp, and J. Mylopoulos, “Towards
Requirements-Driven Software Development Methodology: The
Tropos Project,” Information Systems, June 2002
[11] C.A. Ellis, S.J. Gibbs, and G.L. Rein, “Groupware: Some
Issues and Experiences.” Commun. ACM 34(1), pp. 39-58, 1991
[12] H. Fuks, A. Raposo, and M.A. Gerosa, “Do Modelo de
Colaboração 3C à Engenharia de Groupware”. WEBMIDIA 2003 -
Simpósio Brasileiro de Sistemas Multimídia e Web, Trilha especial de
Trabalho Cooperativo Assistido por Computador, November 2003,
Salvador-BA, pp. 445-452.
[13] Google Docs: http://docs.google.com
[14] C. Hewitt, “Offices are open systems,” ACM Trans. Inf. Syst.
4(3) (Jul. 1986), pp.271-287.
[15] R.E. Kraut, S.R. Fussell, S.E. Brennan, and J. Siegel,
“Understanding effects of proximity on collaboration: Implications for
technologies to support remote collaborative work”, Distributed work,
P. Hinds & S. Kiesler (Eds.), Cambridge, MA, US: MIT Press, 2002,
pp. 137-162
[16] J.C.S.P. Leite, “Transparência: Desafios para a Engenharia
de Software”, Sexta-Feira, May 19th, 2006
http://jcspl.wordpress.com/2006/05/19/transparencia-desafios-para-a-
engenharia-de-software/
[17] N.A.M. Maiden, S.V. Jones, S. Manning, J. Greenwood, and L.
Renou, “Model-Driven Requirements Engineering: Synchronising
Models in an Air Traffic, Management Case Study”, Advanced
Information Systems Engineering, LNCS 3084, Springer, 2004, pp.
368-383
[18] H. Mouratidis, P. Giorgini, G. Manson, and I. Philp. “Using
Tropos methodology to Model an Integrated Health Assessment
System”, Proceedings of the 4th International Bi-Conference
Workshop on Agent-Oriented Information Systems (AOIS-2002),
Toronto-Ontario, May 2002
[19] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis,
“Telos: Representing Knowledge About Information Systems” ACM
Transactions on Information Systems 8(4), October 1990
[20] A. Susi, A. Perini, P. Giorgini, and J. Mylopoulos. “The Tropos
Metamodel and its Use”. Journal Informatica 29(4), pp. 401-408,
2005
[21] A. Sutcliffe, and A. Gregoriades, “Validating functional system
requirements with scenarios”, IEEE Joint International Conference on
Requirements Engineering 2002 (RE 2002), Essen, Germany, pp. 181-
188.
[22] UML 2.0. http://www.uml.org/#UML2.0
[23] Yahoo Groups. http://br.groups.yahoo.com/
[24] Z. You, “Using meta-model-driven views to address scalability
in i* models”, Master of Science thesis, Graduate Department of
Computer Science, University of Toronto, Toronto, Canada, 2004
[25] E. Yu, “Modelling Strategic Relationships for Process
Reengineering”, PhD Thesis, Graduate Department of Computer Sci-
ence, University of Toronto, Toronto, Canada, 1995
[26] E. Yu, “Agent-Oriented Modelling: Software versus the
World Agent-Oriented Software Engineering”, AOSE-2001 Workshop
Proceedings. LNCS 2222. Springer Verlag. pp. 206-225

