

Using Task Descriptions for the Specification of
Web Application Requirements1

Pedro Valderas, Joan Fons and Vicente Pelechano
Department of Information System and Computation.

46022, Technical University of Valencia, Spain
{pvalderas, jjfons, pele}@dsic.upv.es

Abstract. There are a significant number of proposals for modelling
and developing Web Applications, but very few of them state
rigorously how to elicit and represent requirements, and how to go
from the requirements specification to the conceptual schema with a
sound methodological basis. This work presents an approach to capture
Web application requirements by means of: (1) the identification of the
tasks that users must be able to achieve and (2) the description of these
tasks from the point of view of the interaction that the user requires of
the web application. In addition, we show how the navigational
structure of a Web application can be systematically derived from the
task-based requirement specification.

1 Introduction
There are a significant number of proposals (OOHDM [2], UWE [3], WSDM [4],
OOH [5], OOWS [6], etc.) that provide a methodological solution for
developing Web Applications. However, these proposals are mainly focus on
defining Web applications from conceptual schemas that allow them to
systematically obtain implementations. Very few of them state rigorously
with how to elicit and represent requirements, and how to go from the
requirements specification to the conceptual schema with a sound
methodological basis.
 In the context of requirement engineering, traditional methods such us
Constantine et al. [10], Jaaksi [11], Leite et al. [12], Rosenberg et al. [13] have
done an acceptable work in specifying structure and behaviour requirements.
But a Web Application requires considering some other particular aspects that
are not properly addressed by traditional requirement engineering methods. In
concrete, navigation becomes first-order citizen, and the requirement
specification step must consider it accordingly.
 In this work, we present an approach to capture Web application
requirements. This approach is based on the task metaphor, which is widely

1 The work reported in this paper has been funded by the MEC under grant TIN2004-03534

and cofinanced by FEDER

accepted for the capture of functional requirements; however it is reoriented
to capture, in a adequate way, the navigational structure that fits the user’s
needs. We extend the traditional task descriptions used for the functional
requirement specification by introducing information about the interaction
between the user and the system. In addition, we present a methodological
guide that allows us to systematically obtain the navigational structure of a
Web application from tasks descriptions. This, allows us to better understand
the capabilities of our approach to capture navigation at the requirement level.
 This paper is organized as follows: Section 2 presents a task-based method
for the specification of Web application requirements. Section 3 explains how
the navigational structure of a Web application is systematically derived from
task descriptions. Finally, conclusions and future work are presented in
section 4. To clearly introduce our work, an E-commerce application like the
Amazon web site (thereafter known as the “Amazon example”) has been
taken as a case study.

2 A Task-Based Method for the Specification of Web application
Requirements
In this section, we present a method to specify Web application requirements
from the description of the tasks that users must be able to achieve. This
method is divided into two main stages:
(1) Identification of the tasks that describe the user’s needs. To make this job

easy, we propose the definition of a task taxonomy.
(2) Description of the set of tasks. In this case, we propose a technique based

on both UML activity diagrams and information templates.

2.1 Task Identification

In order to easily identify tasks, we propose the construction of a task
taxonomy taking a statement of purpose, which describes the goal for which
the application is being built, as the starting point. The statement of purpose is
considered as the most general task. From this task, a progressive refinement
is performed and more specific tasks are obtained from more general ones.
Tasks are decomposed into subtasks by following structural or temporal
refinements. The Structural refinement (represented by solid lines, see Figure
1) decompose complex tasks into simpler subtasks. The Temporal refinement
(represented by dashed lines, see Figure 1) provide constraints for ordering
tasks that are all children of a single task according to the task logic. To define
these temporal constraints we propose the use of the temporal relationships
introduced by the CTT approach (ConcurTaskTree) [7]. Due to space
constraints we only present the three relationships that are used in the case
study introduced in this paper:

− T1 []>> T2, Enabling with information passing: when T1 is terminated then
T2 is activated. In addition, when T1 task terminates it provides some value
for task T2 besides activating it.

− T1 |> T2, Suspend-Resume: T1 can be interrupted by T2. When T2
terminates then T1 can be resumed.

− T1*, iteration: the task can be achieved several times.
 As we have said above, the task taxonomy is used to identify the tasks that
describe the user’s needs. The task taxonomy is not used to describe tasks.
Tasks are described by means of activity diagrams [1] because they allow us
to better capture the navigational structure of a Web application (explained
below in detail). In this sense, the task taxonomy is finished when elementary
tasks are obtained. An elementary task is defined as a task that when divided
into subtasks, atomic actions are obtained. Figure 1 shows the task taxonomy
that we obtain from the statement of purpose of the Amazon example. In order
to easily identify the elementary tasks they are circled with a thicker line.

Fig. 1. The Task Taxonomy of the Amazon example

We briefly describe the task taxonomy of Figure 1:
− The statement of purpose is decomposed by means of a structural

refinement (solid line) into two tasks: Purchase Products and Manage
Information.

− The task Purchase Products is decomposed by means of a temporal
refinement (dashed line) into Collect Products and Checkout. The relation
between them is enabling with information exchange. Indeed, first products
should be collected into de shopping cart before checkout is possible. The
information that needs to be exchange is the shopping cart.

− Collect Products is decomposed into Add Product to Shopping Cart (which
can be repeated) and Inspect Shopping Cart. The relation between both
tasks is suspend-resume, which indicates that Add Product to Shopping Cart
can be interrupted by Inspect Shopping Cart at any point. It will be
reactivated from the state reached before the interruption once Inspect
Shopping Cart task is ended.

− Add Product to Shopping Cart product task is decomposed by means of a
structural refinement into the tasks Add CD, Add Software and Add Book.

− The task Manage Information is decomposed by means of a structural
refinement into Manage Products and Manage Clients.

 Tasks inherit the temporal constraints of the ancestors. For instance, in
Figure 1 Add Book is a sub-task of Add Product to Shopping Cart and since
Add Product to Shopping Cart can be suspended by Inspect Shopping Cart,
this constraint will also apply to Add CD.
 Once elementary tasks are identified we must describe how they should be
achieved. Next, we introduce a strategy to do this.

2.2 Description of tasks

 In the traditional specification of functional requirements a task is described
from the set of actions that the system and the user perform to obtain a certain
result. In order to better capture the navigational properties of a Web
application we extend these descriptions by introducing information about the
system-user interaction, indicating explicitly when (at which exact moment) it
is performed. To do this, we introduce the concept of interaction point (IP).
Two kinds of interactions can be performed in an IP:
 (1) Output Interaction: the system provides the user with information and/or
access to operations which are related to an entity2. The user can perform
several actions with both the information and the operations: the user can
select information (as a result the system provides the user with new
information) or the user can activate an operation (as a result the system
carries out an action).
 (2) Input Interaction: the system requests the user to introduce information
of an entity. The system uses this information to correctly perform a specific
action (for instance, the client information needed to carry out an on-line
purchase). In this case, the only action that user can perform is the
information introduction.
 In this way, a task is described as a process where the system carries out
several actions sometimes delaying them in order to interact with the user by
means of an IP. As far as the system actions, two kinds are proposed: (1)
Functionality Execution that are actions that change the system state and (2)
Information Search that are actions that only query the system state.
 In order to perform descriptions based on IPs we propose the use of UML
activity diagrams [1] where:
− Each node (activity) represents an IP (solid line) or a system action (dashed

line). IPs are stereotyped with the Output or the Input keyword to indicate
the interaction type. System actions are stereotyped with the Function or the
Search keywords to indicate their types.

2 Any object of the real world that belongs to the system domain (e.g. client, product, invoice, etc)

− In the Output IPs the number of information instances3 that the IP includes
(cardinality) is moreover depicted as a small circle in the top right side of
the primitive.

− As far as the Input IPs, we have said that they are used by the system to
correctly perform a specific action. To capture that this kind of IPs
exclusively depends on a system action and it does not take part in the
general process of the task, nodes that represent both elements (input IP and
system action) are encapsulated into dashed squares.

− Finally, each arc represents (1) a user action if the arc source is an IP or (2)
a node sequence if the arc source is a system action. If an arc represent a
user action (the arc source is an IP), it can be either an activation of an
operation, if the arc target is a system action, or an information selection, if
the arc target is another IP.

Fig. 2. Add CD Elementary Task.

Continuing with the Amazon example, the Add CD elementary task is
described in Figure 2 (the shaded numbers are not part of the notation). This
task starts with an Output IP where the system provides the user with a list
(cardinality *) of music categories (1). From this list, the user can select a
category (2a and 2b). If the category has subcategories the system provides
again the user with a list of (sub) categories (2b). If the selected category has
not subcategories (2a) the system informs about the CDs of the selected
category by means of an Output IP (3). From this IP the user can perform two
actions: A) select a CD (4a) and then the system provides the user with a
description of the selected CD (5a). B) Activate a search operation (4b) and
then the system performs a system action which searches the CDs of an artist
(5b). To do this, the user must introduce an artist by means of an Input IP. If
the search returns only one CD, the system provides the user with its detailed
description (6b1). Otherwise, the system provides the user with a set of CDs

3 Given a system entity (e.g. client), an information instance is considered to be the set of data related to
each element of this entity (Name: Joseph, Surname: Elmer, Telephone Number: 9658789).

(6b2). Finally, when the user has obtained a CD description (5a) he/she can
activate the Add_to_Cart operation (6a) and then the system performs an
action which adds the selected CD to the shopping cart (7a).
 IP-based descriptions are proposed to capture the navigational properties of
Web applications. In order to make this capture easy, details about the
information exchanged between the user and the system are not described (we
just indicate the entity which the information is related to). In the same way,
details about how the system achieves each action are neither described. This
information is specified in later steps. This, allows us to provide a high level
of independency among different kinds of requirements.
 In order to describe the system actions, we propose a strategy based on
sequence diagrams that is explained in [27]. Details about the information
exchange are described using an information template technique that is next
introduced.
 Describing the system data. The information that must be stored in the
system is defined by means of a template technique that is based on data
techniques such as [8] or the CRC Card [9]. We propose the definition of an
information template (see Figure 2) for each entity identified in the
description of a task. In each template we indicate an identifier, the entity and
a specific data section. In this section, we describe the information in detail by
means of a list of specific features associated to the entity. For each feature
we provide a name, a description and a data type. In addition, we use these
templates to indicate the information shown in each IP. For each feature we
indicate the IP/s where it is shown (if there is any). To identify an IP we use
the next notation: Output (Entity, Cardinality) for Output IPs and Input
(Entity, System Action) for Inputs IPs.

Fig. 3. Information template.

According to the template in Figure 3, the information that the system must
store about a CD is (see the specific data section): the CD title, the artist
name, the front cover and the price which are shown in the IPs Output(CD,1)
and Output(CD,*) (IPs defined in the Add CD elementary task, see Figure 3);
the recording year, some comments about the CD and the list of songs which

are only shown in the IP Output(CD,1); and finally, times that a CD has been
bought and the client profiles that usually purchase it which are not shown in
any IP.

3 Extracting the Navigational Structure of a Web application
from Task Descriptions
In this section we present some guidelines to extract the navigational structure
of a Web application from the task-based requirement specification presented
above. To represent a navigational structure we use the abstractions proposed
by the OOWS method [6]. In this sense, a (necessary) brief overview of the
OOWS navigational model is next presented.

3.1 The OOWS navigational model: an Overview

The OOWS navigational model is made up of a set of navigational maps that
describe the navigation allowed for each kind of user. A navigational map is
represented by a directed graph (which defines the navigational structure)
whose nodes are navigational contexts and its arcs denote navigational links.
Figure 4A shows the visitor navigational map of the Amazon example. On
one hand, a navigational context (represented by an UML package
stereotyped with the «context» keyword) defines a view over the classes of the
class diagram that allows us to specify the information that is shown in the
context (class attributes) and the operations that the user can activate (class
operations). The navigational context CD (see Figure 4B) provides the user
with information about CDs (title, year, songs, comments, cover and price)
and about their artists (name). Moreover, the Add_to_Cart operation can be
activate by the user. On the other hand, a navigational link represents
navigational context reachability: the user can access to a navigational context
from a different one if a navigational link between both has been defined.

Fig. 4. The OOWS Navigational Model

 In addition, for each context, we can also define: (1) Search filters, which
are mechanisms that allow us to filter the space of objects that retrieve the
navigational context. The CD navigational context allows the user to find all
the CDs of a specific artist (see search filter in Figure 4B) and (2) Indexes,
which are structures that provide an indexed access to the population of
objects. Indexes create a list of summarized information allowing the user to
choose one item (instance) from the list. This selection causes this instance to
become active in the navigational context. The navigational context of Figure
4B provide the user with a list of summarized information where for each CD,
the title, the artist name, the price and the cover are shown.

3.2 From Task Descriptions to OOWS Navigational Models

In this section, we explain how the navigational structure of a Web
application (described by means of the OOWS abstractions) is systemically
derived from task descriptions. First, we explain how navigational contexts
are detected and defined. Next, we explain how detect navigational links.
Finally, detection of indexes and search filters are also presented.
 Detecting Navigational contexts. We detect navigational contexts from
the Outputs IPs defined in the tasks descriptions. An Output IP represents a
step of a task where the system provides the user with some information about
an entity. In the OOWS navigational model, information is provided to the
user by means of navigational contexts. Then, each Output IP derives into a
navigational context except for those IPs than both inform about multiple
instances (cardinality *) of one entity and allow the user to access to another
IP which informs about only one instance (cardinality 1) of the same entity.
These situations are explained below. On the other hand, the view of each
navigational context is derived from: (1) the information template features
that are shown in the IP (which define the class attributes) and the function
system actions that can be activate from the IP (which define the class
operations).
 Figure 5 shows the navigational contexts detected from the task Add CD.
The Output(Music Category,*) IP derives into the navigational context Music
category. The Output(CD,1) IP derives into the navigational context CD. Any
context is derived from the Output(CD,*) IP because it allow the user to
access to Output(CD,1) IP (same entity, only one instance). In addition,
Figure 5 also shows how the navigational context CD is defined. On one
hand, the features specified in the CD entity template (which are shown in the
IP Output(CD,1)) define the class attributes. Furthermore, the Add_to_Cart
operation is defined in the CD class because the Add_to_Cart system action
can be activated from the Output(CD,1) IP.

Fig. 5. Context definition form task descriptions

 Detecting Navigational Links. Navigational links are detected from the
activity diagrams that describe each task. We define a navigational link
between two navigational contexts if the IPs which the contexts have been
detected from are: (1) connected by means of an arc or (2) connected through
an IP which has not derived into any context. In addition, the temporal
relationships defined in the task taxonomy also allow us to identify
navigational links. For instance, if a suspend/resume relationship has been
defined between two task T1 and T2, navigational contexts derived from T2
must be accessible from navigational contexts derived from T1. Then,
navigational links among T1 navigational contexts and T2 navigational
contexts are defined.
 Figure 6 shows the navigational links defined from the task Add CD. On
one hand, a navigational link is defined between the contexts Music Category
and CD because the Output(Subject,*) IP and the Output(Book,1) IP (IPs
which contexts are detected from) are connected through the Output(Book,*)
IP (which has not derived into any context). On the other hand, two
navigational links are defined to connect the contexts Music Category and CD
to the context Shopping Cart (which has been derived from the Inspect
Shopping Cart task) due to a suspend/resume relationship. Taking into
account that a task inherits the temporal relationships of its parent tasks, the
Add CD elementary task is connected to the Inspect Shopping Cart
elementary task by means of a Suspend/Resume relationship (inherited from
the Add Products to Shopping Cart task). Then, the navigational contexts
derived from the task Add CD are linked to the navigational context derived
from the task Inspect Shopping Cart.

Fig 6. Identification of the navigational links.

 Detecting Indexes and Search Filters. On one hand, indexes are detected
from those output IPs that both informs about multiple instances of one entity
(cardinality *) and provides the user with access to a second IP that informs
about only one instance of the same entity (cardinality 1). These IPs are
defined to allow the user to compare a list of elements (IP instances) among
themselves in order to select the desired one. Then, these IPs define an index
in the navigational context detected from the second IP. Index attributes are
detected from the template features that are shown in the first IP. On the other
hand, search filters are detected from search system actions. Each search
system action that is activated from an output IP which has defined either a
navigational context or an index of a navigational context maps to a search
filter of the navigational context. Filter attributes are defined from the
template features that are request in the input IP which allow the user to
introduce the search criterion.

Fig. 7. Identification of indexes and search filters.

Figure 7 shows the information access mechanisms of the CD navigational
context. On one hand, the Output(CD,*) IP defines an index whose attributes
are detected from the template features that are shown in the IP. On the other
hand, a search filter is defined into the CD navigational context because a
search system action can be activated from the IP that generates an index of
this context, (Output(Book,*)). Attributes of the filter are obtained from the
template features that are request in the input IP that allows the user to
introduce the search criterion (an artist).
 Implementation Issues. Figure 8 shows the implementation of the contexts
derived from the task Add CD. Figure 8A shows the implementation of the
context Music Category. Figures 8B and 8C implement the context CD (index
of CDs and CD description). Furthermore, we can see how the implemented
Web pages provide support to achieve the task Add CD according to its
description (see Figure 2). This allows us to check that navigation has been
correctly captured in the task-based requirement specification.

Fig. 8. Implementation of the contexts Music Category and CD

4 Conclusions
 In this work we have presented an approach to capture the requirements of
Web application by (1) identifying the tasks that users must achieve and (2)
describing these tasks from the interaction that the user requires of the web
application. In addition, we have shown how the navigational structure of a
Web application can be systematically derived from a task description.
 As a proof of concept this proposal has been put into practice successfully
in the development of small and medium-size web applications, including the
DSIC Department Web Site (http://www.dsic.upv.es), the OOMethod Group
Web Site (http://oomethod.dsic.upv.es) and the Web application of the
Development Cooperation Center (http://www.upv.es/ccd). In all these cases,
the requirements specification and its corresponding Web conceptual schema
were obtained according with the introduced approach.
 Finally, we are currently defining a wizard that asks the user by means of a
guided process in order to systematically detect and describe tasks. This
wizard will allow us to hide the possible complexity of our notation making
the definition of complex Web applications easier.

References
[1] Object Management Group. Unified Modeling Language (UML) Specification Version 2.0

Final Adopted Specification. www.omg.org, 2003.
[2] D. Schwabe, G. Rossi, and S. Barbosa. Systematic Hypermedia Design with OOHDM. In

ACM Conference on Hypertext, Washington, USA, 1996.
[3] N. Koch. Software Engineering for Adaptive Hypermedia Applications. PhD thesis,

Ludwig-Maximilians-University, Munich, Germany, 2000.
[4] O. De Troyer and S. Casteleyn. Modelling Complex Processes fro Web applications using

WSDM. In International Workshop on Web Oriented Software Technologies. Oviedo,
Spain. 2003 pp 1,12.

[5] J. Gómez, C. Cachero, O. Pastor. Extending an Object-Oriented Conceptual Modelling
Approach to Web Application Design. June 2000. CAiSE'2000, LNCS 1789, Pags 79-93.

[6] J.Fons, V. Pelechano, M. Albert, and O. Pastor. Development of Web Applications from
Web Enhanced Conceptual Schemas. In ER'03, volume 2813 of LNCS. Springer, 2003.

[7] F. Paternò, C. Mancini and S. Meniconi, 1997. “ConcurTaskTrees: a Diagrammatic
Notation for Specifying Task Models”, INTERACT’97, Chapman & Hall, 362-369.

[8] A. Durán, B. Bernárdez, A. Ruiz and M. Toro. A Requirements Elicitation Approach
Based in Templates and Patterns. WER’99, Buenos Aires (Argentina), 1999. pp. 17-29.

[9] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object–Oriented Software.
Prentice–Hall, 1990.

[10] L.L Constantine., L.A.D. Lockwood “Software for Use: A practical Guide to the Models
and Methods of Usage-Centered Design”. Addison Wesley 1999.

[11] A. Jaaksi. Our Cases with Use Cases. JOOP Vol 10, Nº9, Febraury 1998, pp 58-65.
[12] J.C. Leite, G. Rossi, F. Balaguer, V. Maiorana, G. Kaplan, G. Hadad, and A. Oliveros,

Enhancing a Requirements Baseline with Scenarios., RE'97, Anapolis. IEEE, 1997, 44-53.
[13] D. Rosenberg, K. Scott, “Use Case Driven Object Modelling with UML”. Addison

Wesley, 1999.

