
A Content Analysis Technique for Inconsistency 
Detection in Software Requirements Documents 

Alessandro Fantechi, Emilio Spinicci 

Dipartimento di Sistemi e Informatica 
Università degli Studi di Firenze  

Via di S. Marta, 3 - 50139 Firenze (Italy) 
Phone: +39 055 4796265 
Fax: +39 055 4796363 

{fantechi, spinicci}@dsi.unifi.it 

Abstract. This paper presents J-RAn (Java Requirement Analyzer), a 
tool that implements a novel Content Analysis technique to support the 
verification of consistency and completeness of a Software Requirement 
Specification. This technique exploits the extraction, from a require-
ment document, of the interactions between the entities described in the 
document as Subject-Action-Object (SAO) triples (obtainable using a 
suitable syntactic parser). SAO triples represent a concept in its most 
synthesizing form.  Analyzing the distribution of such concepts in the 
requirement document helps to locate possible sources of inconsistency 
and incompleteness. 

1 Introduction 

The use of Natural Language is in practice the most common way for 
specifying software requirements, because of the easy comprehension and 
sharing among all people involved in the software development process, from 
the stakeholders to the designers. However, the inherent ambiguity of Natural 
Language may lead to incorrect or inconsistent definition of requirement 
specifications, with the introduction of semantic contradictions or the lack of 
necessary information. 

Several Natural Language Processing techniques and tools have been de-
veloped and applied to software requirements documents for consistency and 
completeness verification, by revealing sentences affected by ambiguity: 
among them, tools for lexical evaluation, such as QuARS [6] and ARM [17] 
provide structural and quality indicators on the basis of a suitable model, 
defined considering the existing literature and experiences in the field of re-
quirement engineering and software process assessment, to detect and possi-



bly correct terms or wordings that are ambiguous: for example, QuARS pro-
vides defect indicators for the testability of a requirement description in order 
to highlight defective sentences in terms of vagueness (that is, the sentence 
contains words having a non uniquely quantifiable meaning), subjectivity (if 
a sentence refers to personal opinions) optionality (a sentence containing one 
or more optional terms), and so on.  

Tools for syntactical evaluation exploit instead syntactical analyzers to de-
tect sentences having different interpretations, as in the case of the tools 
LOLITA [8, 9] and Circe-Cico [1]. LOLITA is a general purpose NLP tool 
that is able to identify the morphological, grammatical, semantic and prag-
matic relations of a sentence, by representing them with a semantic net, which 
is used as a knowledge base of the system. The tool allows for the extraction 
of parsing trees that represent possible interpretations of a sentence; the most 
likely one is identified by computing ambiguity measures on the parsing trees, 
using statistical techniques. The Circe-Cico environment provides a support 
for identifying, selecting and validating NL requirements, with the integration 
of information from the application domain, by producing parsing trees of the 
input NL documents. In its latest version [2, 3], the Circe-Cico tool allows the 
formalization of NL requirements in Abstract State Machines (ASM) or UML 
diagrams. 

In this work, we introduce an alternative way for the detection of inconsis-
tent descriptions of software requirements, by exploiting Linguistic tech-
niques successfully applied to the analysis of patent documents, for the ex-
traction of information related to the novelty of a given invention [4]. Such 
techniques are based on the identification of Subject-Action-Object (SAO) 
triads, which represent the concepts expressed in a sentence in the most syn-
thesizing form. The Java Requirement Analyzer (J-RAn) tool [4] is capable to 
automatically extract from the requirement document each paragraph in  
Natural Language related to a requirement description; sentences of these 
paragraphs are then processed by a syntactic parser to extract SAO triads, that 
is, information related to all the interactions carried out or received by entities 
detailed in the specification; the tool allows these interactions to be modelled 
in the form of a UML Class Diagram in XMI format. However, the element 
of novelty in J-RAn is constituted by the implementation of a SAO-based 
Content Analysis technique, which returns a measure of how much a para-
graph deals with a topic of interest: for example, a software functionality 
specified in a group of requirements. These measurements are obtained by 
assigning a score to each SAO, according to suitable weights for Subject, 
Action, Object and to a set of dictionaries related to the functionalities to be 
investigated. In the case of software requirements descriptions, these scores 
can help to detect in the document possible redundant or missing information, 
which can constitute a source of potential ambiguity or inconsistency. The 



latest development of the tool allow for the generation of Content Analysis 
dictionaries by exploiting the automatic selection of SAOs belonging to the 
description of the software functionalities under investigation. In the next 
sections, the structure of the J-RAn tool will be presented, together with a 
detailed description of SAO-based Content Analysis and an example of appli-
cation. 

2 The Java Requirement Analyzer 

Information Extraction from Software Requirement Specifications is made 
difficult by the fact that, in general, the use of standardized document models 
and writing rules cannot be assumed for this kind of technical documentation; 
actually, companies and organizations use their own templates to write their 
SRSs. What can at least be assumed is that each requirement should be identi-
fied by a reference or paragraph tag, which can vary depending on the docu-
ment model; J-RAn is able to extract the descriptive paragraphs related to 
each software requirement, by searching each requirement tag matching the 
tag format, defined by the user by means of regular expressions. After loading 
a document, a suitable extractor module selects requirement paragraphs and 
sentences detailing software requirements, using the tag format previously 
defined. The extraction of paragraphs and of the corresponding sentences is 
implemented using Phrasys NLP components [10]. Sentences related to each 
paragraph are then processed by Link Grammar [12], a syntactic parser whose 
output is used to generate the set of SAO triads. The availability of this in-
formation allows SAO-based Content Analysis and UML Class Diagram gen-
eration to be performed. Figure 1 shows the sequence of operations J-RAn 

Figure 1. Processing chain of Software Requirement documents in J-RAn. 



performs to process a requirement document.  
Next subsections discuss the generation of paragraphs and sentences re-

lated to each requirement description, and the extraction process of SAO 
triples. Next releases of the tool will allow also structured requirement defini-
tions to be imported from requirement management tools, such as Telelogic 
Doors.  

2.1 Extracting Requirements using Phrasys NLP components 

Phrasys is a collection of NLP modules, available at no cost for evaluation 
purposes, implemented in Java following the Java Beans conventions. The 
modules of the collection are chained each other by means of suitable listen-
ers, which handle document processing through events. Events carry informa-
tion that is first processed and then passed from one component to the next. 

J-RAn incorporates the Phrasys components needed for the extraction of 
the paragraphs and sentences related to each requirement description: the 
LineReader, a basic component that generates text lines from an input file, 
and the Sentencer, which splits input text lines into paragraphs and sentences. 

The Sentencer receives LineEvents from the LineReader component, con-
verts these LineEvents into SentenceEvents and ParagraphEvents, and passes 
them on to registered listeners. ParagraphEvents of requirement descriptions, 
selected accordingly with the defined tag format, and the associated Sen-
tenceEvents are assembled in a tree structure visualized in the Analysis Result 
window (Figure 3). Each extracted sentence embodied in the SentenceEvents 
is then passed to Link Grammar for syntactic parsing and SAO extraction. 

The Lemmatiser component of Phrasys is actually incorporated in J-RAn 
as well, and can be optionally selected, after the processing by Link Gram-
mar, to reduce elements of SAOs in their base form: this will allow the use of 
a synonym dictionary for Content Analysis in future releases of the tool. 

2.2 Extracting SAO triples using Link Grammar parser 

Link Grammar is a syntactic parser for English language, released under 
GNU General Public License and based on the link grammar theory [13]: the 
parser assigns to a given sentence a syntactic structure, which consists of a set 
of labelled links connecting pairs of words.  

To find a syntactic structure, Link Grammar uses a dictionary that incorpo-
rates Wordnet and a set of rules for linking words, that is, each word is as-
signed a set of connectors that allow a linkage with another word in the sen-



tence. A sentence defined by the link grammar is a sequence whose words are 
connected so to verify the following conditions: 

• Satisfaction: the links between each pair of words meet the linking 
rules, that is, each word is linked in a pair according with the assigned 
connectors; 

• Planarity: the links do not cross; 
• Connectivity: all words and related links form a fully connected graph.  

A parsed sentence may exhibit multiple linkages, which can be shown either 
in a textual or graphical output, both detailing the connectors linking the 
words in the structure. While determining a syntactic structure, Link Gram-
mar assigns a cost vector to each complete linkage found, taking into account 
the number of unused words, the relative size of components combined with 
conjunctions, and the total length of the linkage.  

J-RAn selects the best cost vector linkage, which corresponds to the most 
likely interpretation of the sentence, among all the linkages returned by Link 
Grammar exploiting the output parser in the textual form. During the parsing, 
Link Grammar splits the sentence into individual words, or tokens, and anno-
tate extracted tokens with essential classification labels (Part-Of-Speech tags) 
such as ".n" (noun) or ".v" (verb), needed by the parser to identify the subject, 
the verb and the object in the sentence.  

The SAO extraction is performed by J-RAn locating any verb and its con-
nected auxiliaries in the sentence (searching for “.v” POS-tags); once the verb 
has been found, the subject and the object can be located if any “S” or “O” 
connector is found linking the verb with other tokens of the sentence. 

The following is an example of SAO extraction from the sentence “During 
this phase, the system will scan the crossing area …”: Figure 2 shows the part 
of interest of the graphic output after Link Grammar parsing; the subject and 
the object linked to the verb “will scan” are the tokens “system” and “area”. 
To complete the extraction, further tokens may be added following any at-
tribute (“AN”) or determinative (“D”) connectors. The resulting SAO is “sys-
tem – will scan – crossing area”.  

 
+------------------------------------------Xp-------------------------- ------+ 
+---------------Wd-----------------+                                          | 
|     +-------------CO-------------+              +------------MVp------------+ 
|     +--------Xc--------+         |              +----------Os---------+     | 
|     +------Js-----+    |         |              |    +-------D*u------+     | 
|     |      +--Dsu-+    |  +--Ds--+---Ss--+---I--+    |       +---AN---+     | 
|     |      |      |    |  |      |       |      |    |       |        |     | 
//  during this.d phase.n , the system.n will.v scan.v the crossing.n area.n  // 

Figure 2. Partial parsing provided by Link Grammar. 



SAO extraction may be performed also from sentences in passive form: 
passive sentences exhibit a subject receiving some action provided by an 
agent, which appears in the sentence in place of the object. Passive sentences 
may be processed referring to proper connectors, and paying attention to re-
verse subject and agent of the action. In this case, the extraction process also 
requires the verb to be lemmatized. 

The full list of extracted SAOs, together with the structure of requirement 
paragraphs, is resumed in the Analysis Result window of Figure 3. The SAO 
extraction, as well as the other steps of the processing chain, is conducted 
interactively, so enabling the user to edit the results by adding missing SAOs 
and by modifying or deleting wrong extractions. 

3 SAO-based Content Analysis 

Content Analysis is an empirical research method to analyze the content of 
a communication, mostly text but not limited to it, renowned in the field of 
social science studies [7, 15].  The purpose is to draw inferences from the text 
using a category system: a content analysis of a text addresses specific as-
pects of interest and does not refer to the whole meaning of the text. 

Text mining is a particular method within content analysis that is limited to 
identify and represent units of text automatically. Text mining techniques are 

 
 
Figure 3. J-RAn Analysis Result window. 



often based on statistical procedures and use the co-occurences of words, or 
more precisely, character strings. 

In the work of Siemens [11], basic text mining techniques for content 
analysis are explained: the use of dictionaries and glossaries of keywords 
allows for producing a statistics of their occurrences in a text, and for detect-
ing if the content of a document deals with a topic of interest; the located 
document sections can be tagged to improve searching operations. 

Content analysis has been applied to a wide range of research studies, as 
well as integrated into several kinds of information retrieval systems: its basic 
principles can also be found in the IBM’s WebFountain [16], to cite the most 
recent text mining application to the analysis of web documents.  

SAO-based Content Analysis consists in using suitable dictionaries of 
verbs and terms related to a topic of interest, and in assigning a score to each 
SAO if its subject, verb and object belong to the adopted dictionaries. By 
giving different weights to subject, verb and object, it is possible to put in 
evidence functional relationships or terminology accordingly to the purpose 
of the analysis. Reduced weights are assigned in the score if a partial match-
ing between SAOs and dictionary elements occurs. 

The scores of SAOs belonging to a given sentence say how much this sen-
tence deals with the topic of interest. A suitable chart showing the score vs. 
sentence/paragraph number immediately shows whether specific parts of a 
document deal with the topic of interest, and in which measure. 

In the context of requirements documents, SAO-based Content Analysis 
can be used as a mean to detect possible inconsistencies, by verifying for 
example whether requirements corresponding to a given functionality are 
expressed only in the desired sections of the document: if other paragraphs 
are dealing with the same functionality, the document probably contains a 
redundancy, that is a possible source of inconsistencies. 

On the other hand, SAO-based Content Analysis can also help to verify the 
completeness in the definition of a software functionality, i.e. the presence of 
all the necessary parts in a requirement specification using properly tailored 
dictionaries. 

The experiments we have conducted on a software requirements document 
use a score assignment in which the subject is unfavoured (weights: Sub-
ject:1, Verb:3, Object:6).  This is due to a common situation in software re-
quirements, where only few actors (the system, the user, the interface, and so 
on) are used as subjects of the prescribed actions; hence, most of the ex-
tracted SAOs present the same subject. A lower weight for the subject will 
avoid a noisy Content Analysis chart. 



J-RAn  currently offers three different types of Content Analysis charts: an 
Average, Max or Cumulative chart can be visualized, all of them versus re-
quirement paragraphs. The first chart exploits the average SAO score per 
paragraph, providing the average relevance of a paragraph according to the 
used software functionality dictionary. The second chart uses the maximum 
score obtained by SAOs belonging to each paragraph, and highlights the 
document locations where the maximum relevance with the topic of interest 
has been reached. The third chart uses the sum of all the SAOs scores in each 

 
 
Figure 4. The Dictionary Generation feature in Content Analysis Setup . 



paragraph, quantifying in this way the relevance of a paragraph with respect 
to the software functionality under investigation. 

Finally, multiple dictionaries can be used simultaneously, one for each of 
the analyzed functionalities, in order to generate a chart  where the relevance 
of a paragraph with respect to each functionality can be compared. Current 
implementation of J-RAn allows to investigate up to three different function-
alities (i.e. groups of software requirements located in three different regions 
of the document); next releases will allow the number of dictionaries to be 
defined by the user.  

3.1 Automatic Dictionary Generation 

In the experiments conducted on requirement documents, compiling cor-
rect dictionaries for SAO-based Content Analysis has resulted quite expen-
sive in terms of time spent in collecting keywords for the software functional-
ities under investigation: these keywords should be adherent enough to the 
extracted SAOs in order to be able to detect the content of a paragraph for 
each functionality, but not too specific, in order to prevent possible inconsis-
tencies (i.e. description of a functionality detected in paragraphs not belong-
ing to it) to remain undetected. Therefore, the current release of J-RAn im-
plements an automatic generation feature to help the user in compiling Con-
tent Analysis dictionaries: Figure 4 points out a panel in the Content Analysis 
Setup window where suitable sliders are used to mark the start and the end of 
the three regions of the requirement document containing the functionalities 
to be investigated: if the automatic generation button is switched to “AUTO”, 
dictionaries for each document region are automatically compiled after SAO 
extraction, by including Subject, Action and Object from the requirement 
descriptions previously marked. Disabling automatic generation allows the 
manual compilation of the dictionary; the user is able to manually modify 
each keyword anyway. Possible manual corrections or modifications made by 
the user to the set of extracted SAO in the Analysis Result window will 
automatically update the generated dictionaries in the Content Analysis Setup 
window.  

3.2 Application example 

The example of application of the SAO-based Content Analysis technique 
presented in the following refers to a requirement document of a railway 
grade crossing protection control system. The analyzed document is com-
posed of two sections, one related to the functional requirements of the sys-



tems, i.e. those including all the operations the system should perform on the 
crossing area, and the other with the environmental requirements, describing 
the required characteristics of the areas where the system will operate, as well 
as any external factors which could affect system operation. Figure 5 shows a 
Cumulative Chart generated after applying SAO-based Content Analysis to 
the two previous categories of requirements selected for investigation: func-
tional requirements (light grey bars) and environmental requirements (dark 
grey bars). The dictionaries for content analysis have been generated accord-
ing with the corresponding SAOs: for example, the functional requirements 
dictionary comprises terms like “obstacle”, “crossing area”, “diagnostic test”, 
and actions like “detect”, “scan”, “perform”; the environmental requirements 
dictionary contains terms like “safety functions”, “environmental standards”, 
“interferences”, and actions like “provide”, “be compatible” and so on.  

The obtained chart shows the distribution into two groups of light and dark 
grey bars, according with the two main sections of the document. Higher 
scores belong to those paragraphs where more than one SAO has been ex-
tracted (e.g. where the paragraph contains more sentences), and therefore, 
where the description of the requirement has resulted to be more detailed. For 
both sections of the document, lower bars of the opposite category may have 
been originated because of a partial (and minimum) matching between SAO 
elements and the terms contained in the opposite dictionary: for example, 
“state” can be found in both dictionaries, as well as “obstacle”. 

Relevant values of a requirement category in a paragraph not belonging to 
the corresponding document section require the related requirement descrip-
tion to be checked: in the example, an interesting consideration can be made 

 
 
Figure 5. Content Analysis Chart generated by J-RAn. 



in examining the environmental requirement labelled II-451: as emphasized 
in Figure 5, the score of the dark grey bar of the paragraph, equals to 14, de-
rives from the SAOs extracted from the following (shortened) description: 
“Any human errors arising during the installation and maintenance […] 
shall not result in the generation of a clear area confirmation signal. The 
system must pass to a vital error state or to a false obstacle detection state. ”. 
The last sentence originates two SAOs, “system – must pass – vital error 
state” and “system – must pass – false obstacle detection state”, which are 
assigned a value of 6 caused by a partial matching with the terms “error 
state”, “obstacle detection state” in the dictionary used for functional re-
quirements, thus generating a not negligible light grey bar. Indeed, the last 
sentence constitutes a redundant definition of a functional requirement: it 
should be moved in the corresponding section of the document, or integrated 
in the functional requirement corresponding to the definition of system oper-
ating states, and replaced in requirement II–451 with a reference to the inter-
ested functional requirement.  The current definition may originate inconsis-
tencies in the case of modification to functional requirements dealing with 
operating states of the system, thus not affecting the environmental require-
ments section. Similar considerations can be made for requirement II–441. 

4 Conclusions 

We have presented the Java Requirement Analyzer (J-RAn), a tool capable 
to perform a functional analysis of software requirements documents by gen-
erating the Subject-Action-Object (SAO) triples, via a syntactic parsing of the 
sentences in Natural Language extracted from the requirements descriptions. 
The set of generated SAOs is used to perform a SAO-based Content Analysis 
as a mean to verify the completeness of requirement definitions and to reveal 
possible sources of inconsistencies, such as redundant descriptions. 

J-RAn is still at a prototypal stage, and is used as a workbench for experi-
menting the adoption of Content Analysis techniques as well as other Natural 
Language Processing techniques for requirement documents evaluation and 
analysis. The experimentation of the tool is however still limited, hence it is 
too early to give general results on the effectiveness of the approach sup-
ported by J-RAn. For the application example presented in this paper, we 
have experienced a 63% of correctly extracted SAOs, while wrong SAOs and 
missing extractions have been resulted respectively in a 21% and in a 16%. 

Wrong and missing extractions are related partially to inaccurate parsing 
and partially to a defective processing of Link Grammar output; a refinement 
of the extraction rules by exploiting more of the connectors provided by Link 
Grammar is thought to allow J-RAn to improve the above figures. Unsatisfac-



tory experiments have been carried out with other parsers, achieving lower 
percentages of correct extractions. 

Other improvements and extensions that are planned for J-RAn include: 
- integrating the tool within academic tools for requirements documents 

management, such as REM [5], as well as commercial ones, such as 
Requisite Pro and Doors;  

- replacing Phrasys with customized libraries for the extraction of re-
quirement descriptions, and integrating in J-RAn free academic POS-
tagging and lemmatizing tools, such as TreeTagger [14], to improve 
extraction of SAOs and dictionary generation. 

Experimentation with several requirement documents coming from diverse 
industrial sectors is also a priority, as well as an assessment of the impact and 
cost/benefit relationships in using the tool on a large amount of documents. 

References 

1. V. Ambriola, V. Gervasi, Experiences with Domain-Based Parsing of Natural Language 
Requirements, Proc. 4 th International Conference NLDB '99, Klagenfurt, Austria, 1999. 

2. V. Ambriola, V. Gervasi, On the parallel refinement of NL requirements and UML dia-
grams. In Proc. of  Workshop on Trasformations in UML, Genova, Italy, Apr. 2001. 

3. V. Ambriola, V. Gervasi, Synthesizing ASMs from natural language requirements. In Proc. 
of the 8th EUROCAST Workshop on Abstract State Machines, Feb. 2001. 

4. G. Cascini, A. Fantechi, E. Spinicci, Natural Language Processing of Patents and Techni-
cal Documentation. Proc. of DAS 2004 6th IAPR International Workshop on Document 
Analysis Systems, Firenze, Italy, September 2004, LNCS vol. 3163 (2004). 

5. A. Durán, A. Ruiz Cortés, R. Corchuelo, M. Toro, Supporting Requirements Verification 
Using XSLT. Proc. of RE 2002, Essen, Germany, Sept. 2002. 

6. S. Gnesi, G. Lami, G. Trentanni, An automatic tool for the analysis of natural language 
requirements. CSSE Journal vol. 20 (1), CRL Publishing: Leicester, Jan. 2005; 53-62. 

7. K. Krippendorff, Content Analysis : An Introduction to Its Methodology, 2nd Edition. Sage 
Publications, Dec. 2003. 

8. L. Mich, Ambiguity identification and resolution in software development: a linguistic 
approach to improve the quality of systems. In Proc. WESS'01, Firenze, Nov. 2001. 

9. L. Mich, R. Garigliano, Ambiguity Measures in Requirement Engineering. Int. Conf. On 
Software Theory and Practice - ICS 2000, Beijing, China, Aug. 2000. 

10. Phrasys Natural Language Processing java library, http://www.phrasys.com. 
11. R. Siemens, Practical Content Analysis Techniques for Text-Retrieval in Large, Untagged 

Text-bases. ACM SIGDOC' 93 Conference, University of  Waterloo, Oct. 1993. 
12. Link Grammar parser, http://www.link.cs.cmu.edu. 
13. D. D. K. Sleator, D. Temperley  Parsing English with a Link Grammar. Third International 

Workshop on Parsing Technologies, Aug. 1993. 
14. TreeTagger, http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger.  
15. R. P. Weber, Basic Content Analysis. Sage Publications, Aug. 1990. 
16. WebFountain, www.almaden.ibm.com/webfountain. 
17. W. M. Wilson, L. H. Rosenberg, L. E. Hyatt, Automated Analysis of Requirement Specifi-

cations. ICSE’97, Boston, MA, May 1997. 


