
Integrating Natural Language Oriented
Requirements Models into MDA

María Carmen Leonardi María Virginia Mauco
INTIA - Departamento de Computación y Sistemas

Facultad de Ciencias Exactas
Universidad Nacional del Centro de la Pcia. de Buenos Aires

Argentina
{cleonard, vmauco}@exa.unicen.edu.ar

Abstract. MDA is a software development framework where the core is a set of
automatic transformation of models. One of these models, the CIM, is used to
define the business process model. Though a complete automatic construction
of the CIM is not possible, we think we could use some requirements models
and strategies adapting them to be used in the MDA framework. We present an
OCL based transformation to obtain a structural object-oriented CIM from
natural language oriented models.

Keywords: Natural language oriented requirements models, MDA Computer
Independent Model, UML object diagram, OCL specifications

1. Introduction

The Model Driven Architecture [1], known as MDA, is a framework for software
development defined by the OMG [2]. Key to MDA is the importance of models and
transformations between them in the software development process. MDA defines
how models defined in one language can be transformed into models in other
languages. An MDA development process generall y begins with a Computer
Independent Model (CIM) which describes the business system independently of the
software system to be implemented. There is not too much work on this model, and
although it is not possible to construct it automaticall y [3], there are some works in
this direction [4].
We have been working with natural language oriented models which describe the
Universe of Discourse [5]. In particular, we have defined manual derivation strategies
to obtain object conceptual models [6, 7] and formal specifications [8] from them. We
think that some of these manual strategies may be formalized in order to define a
semiautomatic transformation from natural language oriented models to a CIM.
Through this transformation it would be possible to integrate these models in the
MDA framework.
In this paper we present an OCL [9] based transformation process to define a CIM
from natural language oriented models, concretely the Language Extended Lexicon
(LEL) and the Scenario Model [5]. We also discuss how Requirements Engineering
models can fit into the MDA framework, and the possibiliti es, diff iculties and benefits
of defining automatic transformations in the first stage of development.

The paper is organized as follows. Section 2 introduces the MDA Framework. Section
3 briefly describes the natural language oriented models used. Section 4 presents our
transformation process, exempli fying and discussing each rule. In Section 5 we
discuss the automatic transformation process. Finall y, Section 6 presents some
conclusions and future work.

2. The MDA Framework

MDA is an approach to the full li fecycle integration of enterprise systems comprised
of software, hardware, humans, and business practices. MDA is based on modeling
different aspects and levels of abstraction of a system, and exploiting
interrelationships between these models [10]. In MDA, all artifacts such as
requirements specification, architecture descriptions, design descriptions, and code
are regarded as models.
One of the key features of this framework is the notion of automatic transformations
that are used to modify one model in order to obtain another one. MDA defines how
models expressed in one language can be transformed into models in other languages.
The Model-Driven development is divided into the following main steps [1]:

• Construct a model describing the business system that is called Computer
Independent Model (CIM).

• Construct a model with a high level of abstraction that is called Platform
Independent Model (PIM).

• Transform the PIM into one or more Platform Specific Models (PSMs).
• Transform the PSMs to code.

A transformation describes how a model in a source language (source model) can be
transformed into a model in a target language (target model). The success of MDA
depends on the definition of transformation languages and tools that make a
significant impact on full forward engineering processes. MDA is still evolving and
many products claim to be complaint with it.

3. Natural Language Oriented Requirements Models

The models presented in this section are well known, used and accepted by the
Requirements Engineering community. A complete description of them can be found
in [5]. The models are:
Language Extended Lexicon (LEL): It is a structure that allows the representation
of significant symbols of the Universe of Discourse. It is composed by a set of
symbols which have a name (and a set of synonyms), notions, and behavioral
responses. LEL symbols define objects, subjects, verbal phrase and states. When
describing LEL symbols two rules must be followed simultaneously: the "circularity
principle" and the “minimum vocabulary principle ".
Scenario Model: A scenario describes situations in the Universe of Discourse. A
scenario is connected to the LEL and it is composed by: a title to identify it, a goal
describing its purpose, a context to define geographical and temporal locations and
preconditions, actors which are entities actively involved in the scenario generall y
persons or organizations, a set of resources that identify passive entities with which

actors work, and a set of episodes where each episode represents an action performed
by actors using resources. An episode may be explained as a scenario; this enables a
scenario to be split i nto sub-scenarios.

4. The OCL based transformation process to define a CIM

In this section we present a process to obtain an object diagram representing the
structural aspects of a CIM. The process consists of a set of steps that apply OCL
based tranformation rules to natural language oriented models to define an object
oriented diagram. These rules come from the formalization of some of the heuristics
proposed in [6, 8], where a complete description can be found.
The process takes as the source model a LEL and a Scenario model from a concrete
case study, and follows the steps described below to organize the application of the
transformation rules :
- Identifi cation of classes: taking as input LEL symbols classified as subjects and
objects, transformation rules named TRC1 and TRC2 propose the definition of one
class for each symbol. TRC2 also defines the methods for the classes coming from
object LEL symbols.
- Identifi cation of methods: considering behavioural responses of subject LEL
symbols, transformation rule named TRM1 defines the methods for the classes
coming from subject LEL symbols (obtained after applying TRC1). Then,
transformation rule TRM2 completes the corresponding parameters.
- Identifi cation of relationships: the object diagram is completed with the definition of
inheritance, aggregation and association relationships through transformation rule
TRR by analysing notions of LEL symbols defined as classes.
It is important to remark that this strategy must be complemented with the
participation of software engineers who will adjust the results obtained after the
application of the transformation rules.
All the tranformation rules mentioned above are completely described in Section 4.2.

4.1 Source and Target Models

Our target model are the Core Package Relationships and the Core Package Backbone
from UML V1.5 metamodel [11] that show the structural aspects of a class diagram.
To describe the tranformation rules between the source and target models in a
consistent way, we must describe LEL and Scenario Model using an UML object
diagram. In this way, we can manage the transformation between them in OCL.
Figure 1 shows this UML object diagram which was defined considering the structure
and the construction process of LEL and Scenario Model proposed in [5].

4.2 The Transformation Rules

This section describes the transformation rules that allow the mapping between the
models. The transformation language we use is based on the transformation language
proposed in [1, 9], which is an OCL extension. Each transformation rule specification
contains a name, the signature, a brief natural language description, and the OCL

Figure 1. Object-oriented diagram of LEL and Scenario Model

specification. Parameters may be any of the components of the requirements model
shown in Figure 1 or any of the components of the target model, referenced in each
transformation rule as RM and UML respectively. Besides, another parameter may be
included to represent the transformation process model, identified as TP, which
contains all the classes with the dictionaries of the language used in the construction
of the requirements models (an English dictionary in this case).
We ill ustrate the application of each rule with examples taken from a Milk Production
System [8]. In some rules we also mention how the result would have been if we had
used the manual strategies proposed in [6, 7, 8].

TRC1: Transformation SubjectToClass (RM, UML, TP)
-- Description: Each subject LEL symbol becomes a UML class. The attributes are
defined as follows: for each notion that does not contain a LEL symbol, the
transformation identifies nouns and defines them as attributes.
SOURCE: S1: RM:: Symbol
 D: TP:: Dictionary

Name

Notion

description

LEL
Symbol

classi fication1..*1..*
isIdentifiedBy<ordered>

1..*

1..*1..*

isDefinedBy

1..*1..*

0..*

0..*0..*

mentions

Goal

Actor

name

0..1

ScenarioModel

1..*1..*

ContextTitle

Exception

BehavioralResponse

description

0..*

0..*

0..*

mentions

1..*

1..*

1..*

has

Resource

name

0..1

Episode

Scenariosatisfies

0..10..1

isAttendedBy

1..*

1..*

1..*
involves

1..*1..*

isboundedByisIdentifiedBy

0..*0..*

has

becomesTo

1..*

1..*1..*

has

1..*1..*

has <ordered>

0..10..1 expressedAs
1..*

1..*

1..*

0..*

1..*

0..*

0..1

corresponds

0..1

corresponds

 TARGET: C1: UML :: Class
 SOURCE CONDITION
 S1.classification :: subject
 TARGET CONDITION
 C1.name = S1.isIdentifiedBy → first()
 let
 plainNotions :Set =
 S1.isDefinedBy →excludes (n/ n.mentions -> notempty())
 nounofNotions: Set =

plainNotions → collect(n/ D.returnNouns(n.description)) asSet
 at: OrderedSet=
 C1.features → collect (f/ f.oclIsTypeOf (Attribute))
 in
 at → forAll (a/ nounofNotions → one (n: String / n = a.name))

Figure 2. Dairy Farmer LEL Symbol

Figure 2 shows a LEL symbol defining a Dairy Farmer. By applying the
transformation rule TRC1, the class shown in Figure 3 is defined:

Figure 3. Dairy Farmer class

One of the main problems of this transformation is that it misses noun groups. As the
method returnNouns, belonging to the Dictionary class, only detects separate nouns,
every noun is a potential attribute, thus generating more and sometimes inappropriate
attributes. However, noun groups detection may be included following linguistic
approaches [12, 13].

TRC2: Transformation ObjectToClass (RM, UML, TP)
-- Description: Each object LEL symbol becomes a UML class. The attributes are
defined as follows: for each notion that does not contain a LEL symbol, the
transformation identifies nouns and defines them as attributes. Methods are defined
adding SET and GET prefixes for each attribute.

DAIRY FARMER
NOTION

Person in charge of all the activities in a dairy farm.
He has a name.
He has a salary.
He may have one or more employees.

BEHAVIOURAL RESPONSE
He assigns to a group each cow of the dairy farm.
He saves birth.
He computes individual production of a group.
He computes birth date for each dairy cow or heifer.

…

DairyFarmer

name
salary
employees

SOURCE: S1: RM:: Symbol
 D: TP :: Dictionary
 TARGET: C1: UML :: Class
 SOURCE CONDITION
 S1.classification :: object
 TARGET CONDITION
 C1.name = S1.isIdentifiedBy → first()
 let
 plainNotions: Set =
 S1.isIdentifiedBy →excludes (n/ n.mentions → notempty())
 nounOfNotions: Set =

plainNotions → collect(n/
D.returnNouns(n.desription)) asSet

 at: OrderedSet=
 C1.features → collect (f/ f.oclIsTypeOf (Attribute))
 oper: OrderedSet =
 C1.features → select (f/ f.oclIsTypeOf(operation))
 in
 at → forAll (a/nounsOfNotions →
 one (n: String /n= a.name))

 oper → forAll(o/ at → one(a / o.name = “set” concat
(a.name) or o.name = “get” concat (a.name)))

The application of the transformation rule to the object LEL symbol Plot, whose
notion is described in Figure 4, gives as result the class and attributes shown in Figure
5. By applying the manual heuristics from [6, 8], we would have obtained the
following attributes: identification, location (discarded by TRC2 because the notion
contains a LEL symbol), size, starting date (TRC2 only considers the noun date),
period of duration (TRC2 takes each of them separately). In both last cases, the
problem is that the dictionary does not recognize noun groups, as we have mentioned
before. Besides, the attribute days obtained applying TRC2 would not be an attribute
following the manual approach because human judgement would have reali zed they
are the way in which periods are measured.

 Figure 4. Plot LEL Symbol Figure 5. Plot class

TRM1: Transformation SubjectBehavioralResponsesToMethods(RM, UML,TP)
-- Description: Each behavioral response of a subject LEL symbol modeled as a class
by TRC1 becomes a method.
SOURCE: S1: RM:: Symbol

PLOT
NOTION

It is a part of a field.
It has an identification.
It has a location inside the field.
It has a size.
It has a starting date.
It has an approximated period of duration in days.
In any time it is occupied by one group.

Plot

identification
size
date
period
duration
days

setIdenti fication()
getIdenti fication()
...

 D: TP :: Dictionary
-- D. ProcessString deletes spaces between strings, and deletes articles, prepositions
and conjunctions, returning nouns and verbs concatenated by _
TARGET: C1: UML :: Class
SOURCE CONDITION
 S1.classification:: subject
 C1.name = S1.isIdentifiedBy → first ()
TARGET CONDITION
 let
 behavioralNames : Sequence =

 S1.has → (collect (br/ D.processString (br))) → AsSequence
 methods : Sequence =
 C1.features → collect (f/ f.oclIsTypeOf(Operation))

in
methods → forAll (m/ behavioralNames → one (n: String /
n= m.name))

Applying the transformation rule TRM1 to the LEL symbol shown in Figure 2, the
methods described in Figure 6 are obtained.

Figure 6. Methods of Dairy Farmer class

TRM2:Transformation SubjectInformationToMethodParameter (RM, UML)
-- Description: Each behavioral response of a subject LEL symbol originates a
scenario [5] . This is modeled with the relationship becomesTo (Figure 1). The rule
models actors and resources of each scenario as parameters of the method obtained
by TRM1 from the behavioral response that originated the scenario. The actor
referr ing to the subject LEL symbol in consideration is excluded.
SOURCE: S1: RM:: Symbol
TARGET: C1: UML :: Class
SOURCE CONDITION
 S1.classification :: subject
 C1.name= S1. isIdentifiedBy → first ()
TARGET CONDITION
 let
 opers: OrderedSet =
 C1.features → select (f/ f.oclIsTypeOf(Operation)
 in
 opers → forAll(o/ o.parameter =
 (S1.has → select (description=o.name).becomesTo.has →

collect (name)) union
 (S1.has → select (description=o.name).becomesTo.involves

→ excludes (S1) → collect (name)))

DairyFarmer

saves_birth()
computes_individual_production_group()
assign_group_each_cow_dairy_farm()

For example, for each method previously defined by TRM1 (Figure 6), parameters are
identified considering the scenarios involved: Assign a group to a cow, Manage birth,
Compute group individual production [8]. As parameters come from resources and
actors, they are modeled as classes when the corresponding resource and actor is a
subject or object LEL symbol (TRC1 and TRC2); for example, parameters cow and
groupForm in the method assign_group_each_cow_dairy_farm (Figure 7). When the
resource or the actor does not belong to the LEL, two things may happen. It may be a
word that does not need a LEL entry because it belongs to the minimum vocabulary
[5], or it may represent a set. In the first case, it is modeled with a primiti ve class or
type (parameter date, Figure 7), and in the second one no new classes are needed
because the parameter is a set of a class already defined (parameter
li stOfCurrentGroup, Figure 7, corresponds to a set of group).

Figure 7. Defining parameters to methods of Dairy Farmer class

TRR: Transformation LELRelationshipsToClassRelationships (RM, UML, TP)
-- Description: This transformation applies to subject as well as object LEL symbols.
Notions of a LEL symbol, called L1, modeled as a class are analyzed in order to
detect other LEL symbols also defined as classes. For each LEL symbol detected,
named L2, the definition of an association relationship between the corresponding
classes is considered, taking into account the following issues:
INHERITANCE RELATIONSHIPS: L1 and L2 have the same classifi cation (object or
subject). Besides, L1 appears in one of the notions of L2. The involved notions of L1
and L2 contain, in a complementary way, two kind of verbs [13] : bottom-up verbs (is
a, is a type of, is a class of) or or top-down verbs (is, may be, may be classified as,
classifies as).
AGGREGATION RELATIONSHIPS: in the notions of the LEL symbol considered as
container, verbs of the type "component_composition_verb" must appear [13] : "to
consist / to contain / to include / to form, to compose, to divide" (these three last in
passive voice1). In the notions of the “ component” symbol, verbs of the type
content_composition_verb must appear [13] : "it is part, it belongs, it is a component,
it is included", among others. As it is not possible to automaticall y distinguish
between an aggregation or a composition relationship, the transformation rule
defines the relationship as an aggregation.
ASSOCIATION RELATIONSHIPS: any relationship between LEL symbols that does not
represent a relationship of the previous types, represents an association. The verb
that appears in the notion (classified as general verb in [13]) is taken as the name of
the association.
A complete justifi cation for TRR may be found in [6] .

1 We decided to eliminate the verbs to have and to posses as indicators of aggregation relationships since,

from our experience, they are commonly used by stakeholders to describe properties of concepts.

DairyFarmer

saves_birth(cow, cal fdateofBirth, bi rthForm, dairyFarm, setCows)
computes_individual_production_group(group, period, milkForm, groupForm)
assign_group_each_cow_dairy_farm(cow, date, l istOfcurrentGroup, groupForm)

SOURCE: S1: RM:: Symbol
 D1: TP:: Dictionary
TARGET: C: UML :: Class
SOURCE CONDITION
 C.name = S1.isIdentifiedBy(first)
TARGET CONDITION
let
cadidateInheritanceNotions: Set=
 S1.isDefinedBy → select (D1.BottonUpVerbsIncludes(n.description))
CandidateAggregationNotions: Set=

S1.isDefinedBy → select(D1.Component_Composition.Includes(n.description))
CandidateAssociationNotions: Set=

S1.isDefinedBy → excludes(cadidateInheritanceNotions union
candidateAggregationNotions)

in
cadidateInheritanceNotions →forAll (n.mentions → exists (s: Symbol / s.classification =
S1.classification and Class.allInstances→ exists (c1 / c1.name = s.name) and
s.isDefinedBy → exists(n1/ n1.mentions-> includes(S1) and
D1.TopdownVerbsIncludes (n1.description)))
 implies G.oclIsTypeOf(Generalization) and G.child = c1 and G.parent = C
 and c1.generalization = G and C.especialization = G)2
candidateAggregationNotions → forAll (and n.mentions → exists (s: Symbol /
s.classification = S1.classification and (Class.allInstances → exists (c1 / c1.name =
s.name)) and s.isDefinedBy → exists (n:notion / D1.
Content_Composition_VerbIncludes (n.description) and n.mentions → includes (S1)))
 implies A.oclIsTypeOf (Association) and A.connection → at(1).participant = C
 and A.connection → at (1).aggregation = aggregate and A.connection →
 at(2). participant= c1 and A.connection → at (2).aggregation=none)
candidateAssociationNotions →forAll(n.mentions → exists(s: Symbol/
class.AllInstances → exists(c/c.name=s.name))
 implies A.oclIsTypeOf(Association) and A.connection → at(1).participant= C
 and A.connection → at (2).participant= c1)

By applying the transformation rule TRR to the LEL symbols of Figure 8 we obtain a
hierarchy with Cow as the superclass and Dairy Cow, Heifer and Calf as subclasses.
Analyzing the LEL symbol Field shown in Figure 9, a notion with a LEL symbol
modeled as a class (Plot, Figure 5) containing the “component-composition” verb is
“divided into” is found. Besides, a “content-component” verb is found in the notion
of the LEL symbol Plot (“ it is a part of …” , Figure 4). Therefore, the transformation
rule TRR defines an aggregation relationship between Field and Plot classes.
Considering the LEL symbol Dairy Farmer (Figure 2), the transformation rule TRR
takes the notion “Person in charge of all the activities in a dairy farm.” because it
mentions another LEL symbol, Dairy Farm (Figure 10), modeled as a class.
Inheritance and aggregation relationships are rejected because the verb involved is a
general one. Then, a general association is defined between both classes.

2 To simpli fy the OCL expression we have omitted the expression to define c1 in the right side of each

implies expression.

Figure 8. Some LEL symbols

 Figure 9. Field LEL Symbol Figure 10. Dairy Farm LEL Symbol

5. Discussing the Transformation Process

The application of the transformation rules allows a systematic definition of a
tentative object-oriented CIM. Though a manual derivation produces a better and
more accurate model definition, transformation rules are a starting point to deal with
the great amount of requirements information. They provide a systematic and
consistent way of defining CIM´s in MDA framework. The CIM should be later
refined by a human, who will correct and complete it.
Considering our experience with manual derivation strategies and the semiautomatic
transformation we propose in this paper, we want to discuss the following issues:
 - Our proposal is mainly based in the metamodel of LEL. The transformation rules
were defined considering the way in which the concepts of the Universe of Discourse
are described, expli citl y defining structural and behavioral aspects of them. For
example, definition of classes is based on the classification of LEL symbols,
automaticall y modeling one class per each subject or object LEL symbol. The strategy
to find methods and parameters is also based on the structure of the models. However,
to identify attributes we have to analyse the text of notions. In this first approach, we
follow a basic linguistic strategy to find nouns in notions, causing some of the

COW
NOTION
…
It may be a calf, a heifer, or a dairy cow.
…

DAIRY COW
NOTION
It is a female cow which has had at least one calf.
…

CALF
NOTION
It is a cow of less than 12 months age.
…

HEIFER
NOTION
It is a female cow of 12 months age or more which has not had a calf.
...

FIELD
NOTION

Land where cows eat pasture.
It has an identification.
It has a precise location in the dairy farm.
It has a size.
It has a pasture.
It has an hectare loading.
It is divided into a set of plot.
It has a list of previous plot.
...

DAIRY FARM
NOTION

…
It is managed by a dairy farmer.
 …

problems presented in Section 4.2. In order to address this problem, and enhance and
refine the strategy, a linguistic analysis must be done [12, 13, 14, 15].
- We think the free style to express the content of notions and behavioral responses of
LEL symbols makes diff icult the automatic processing of the information they
describe. Manual heuristics could use human intelli gence to take the final decision. In
some cases, it would be possible to define a standard form of writing without
restricting the power of expression of natural language.
- Though LEL and scenarios have a precise structure, the use of natural language
allows the same semantics to be usually expressed with many different natural
language sentences. For example, in some cases the same concept may be described
with a noun or a verbal phrase since each essential concept has a root expression as a
noun, a verb or even as an adjective [15]. The manual strategies already mentioned
use human judgement to decide if a verbal phrase should be modeled as a class or as a
method. An automatic transformation takes always the same decision loosing, in some
cases, the real meaning of the essential concept. In our proposal LEL verbal phrases
remain as methods of classes modeling subject LEL symbols. We take this decision to
avoid the definition of classes with only one method, as advised in [16]. Later, this
may be modified by the software engineer.
Natural language oriented models are widely used in requirements modeling due to
their well -known advantages [5]. This kind of requirements models have to be
reinterpreted by software engineers into a more formal design on the way to a
complete implementation. Therefore, a semiautomatic transformation to map their
knowledge into conceptual object models would be reall y useful. Our proposal is a
first step into this direction, aligning with the MDA framework.

6. Conclusions and Future Work

In this paper we have sketched a first proposal to define, in a semiautomatic way, an
early objet oriented CIM starting from natural language oriented requirements
models. The transformation process we propose fits into MDA process as it can be
automated, and as a consequence it may be implemented by a tool, enhancing in this
way the construction of the first MDA model, currently obtained in a manual way [1,
3]. In addition, we also take advantage of all the time and effort the definition of
requirements and business models consumes, thus reducing the gap between
requirements and other development models.
Transformation rules are a concrete automatization of some of the manual heuristics
proposed in [6, 8], and then they involve fix decisions about certain modelization
issues. As a consequence, this strategy unavoidably needs software engineer´s
participation in order to adjust the results obtained after the application of the
transformation rules.
In order to complete the transformation process, we must define the transformation
rules of the business rule model [17], based on the manual heuristics proposed in [6].
We must also define transformation rules to include the dynamic aspects of the
models; in this case, we want to define rules for the definition of interaction diagrams
from scenarios. To do this we may study approaches li ke [12, 14]. We also want to
study the possibilit y of formalizing other object oriented model derivation strategies,
for example the proposal presented in [18] that defines an object model from i* . As

another step to improve the complete strategy and making consistent source and target
models specification, we will propose an UML profile to define the requirements
models used in the transformation strategy.
As we have discussed in Section 5, it would be necessary to incorporate linguistic
approaches to achieve a better processing of the information. In addition, we have to
test the strategy in more case studies.
Traceabilit y plays a crucial role. The transformation process we have proposed allows
the trace between the source and the target. However, we want to enhance this
mechanism by defining another complementary and independent model to capture
and represent the relationships created by the application of the transformation rules,
as the one proposed in [6].

References

[1] Kleppe, A., Warmer, J., Bast, W., MDA Explained: The Model Driven Architecture™:
Practice and Promise, Addison Wesley, 2003.
[2] OMG: Object Management Group. http://www.omg.org/
[3] Eriksson, H., Penker, M., Business Modeling with UML: Business Patterns at Work,
John Wiley & Sons, 2000.
[4] “Business Processes and the OMG: an overview” , http://www.omg.org/bp-corner/bp-
fil es/The_OMG_BP_Corner_INTRO_Paper_3-2-04.pdf.
[5] Leite, J.C.S, Hadad, G., Doorn, J., Kaplan, G., “A Scenario Construction Process” ,
Requirements Engineering Journal, 5(1), Springer Verlag, 2000, pp. 38-61.
[6] Leonardi, M.C., “Una Estrategia de Modelado Conceptual de Objetos basada en Modelos
de Requisitos en Lenguaje Natural” , Master Thesis, Facultad de Informática, Universidad
Nacional de La Plata, La Plata, Argentina, November 2001.
[7] Leonardi, M.C., “Enhancing RUP Business Model with Client-Oriented Requirements
Models” , UML and the Unified Process, ed. Favre, L., IRM Press, Chapter 6, 2003, pp. 80-115.
[8] Mauco, M.V., “A Technique for an Initi al Specification in RSL” , Master thesis, Facultad de
Informática, Universidad Nacional de La Plata, La Plata, Argentina, July 2004.
[9] Warmer, J., Kleppe, A., The Object Constraint Language: Getting Your Models Ready for
MDA, Second Edition, Addison Wesley, 2003.
[10]D´Souza,D., “Model Driven Architecture”, www.omg.org/mda/presentation.html.
[11] Unified Modeling Language Specification. V.1.5. March2003. http://www.omg.org/ocl
[12] Díaz, I., Pastor, O., Moreno, L., Matteo, A., “Una Aproximación Lingüística de Ingeniería
de Requisitos para OO-Method” , Proc. IDEAS'2004: II V Workshop Iberoamericano de
Ingeniería de Requisitos y Desarrollo de Ambientes de Software, Perú , May 2004, pp.270-
281.
[13] Juristo, N., Moreno, A., López, M., “How to Use Linguistic Instruments for Object-
Oriented Analysis” , IEEE Software, 17(3), May/June 2000, pp. 80-89.
[14] Li, L., “Translating Use Cases to Sequence Diagrams” , Proc. of the Fifteenthe IEEE
International Conference on Automated Software Engineering, 2000, pp 293-296.
[15] Boyd, N. “Using Natural Language in Software Development” , Journal of Object Oriented
Programming-JOOP, 11(9), February 1999, pp 45-55.
[16] Meyer, B., Object-oriented Software Construction, Prentice Hall , 1997.
[17] Leite, J.C.S.P, Leonardi, M.C., “Business Rules as Organizational Poli cies” , Ninth
International Workshop on Software Specifi cation and Design, IEEE Computer Society Press,
Japan, April 1998, pp. 68-76.
[18] Castro, J., Mylopoulos, J., Alencar, F. M. R. , Cysneiros Filho G., “ Integrating
Organizational Requirements and Object Oriented Modeling” , Proc. of the Fifth International
Syposium on Requirements Engineering, Canada, 27-31 August, 2001. pp. 146-153.

