

Towards Requirement Traceability in TROPOS

A. Castor, R. Pinto, C. Silva and J. Castro

Centro de Informática, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire S/N,
Recife PE, Brazil 50732-970, +1 5581

{aop, rccp, ctlls, jbc}@cin.ufpe.br

Abstract. If we are to be successful in the development of the next generation of agent
oriented systems we must deal with the critical issue of requirements traceability. Failure to do
so will imply in higher costs and longer corrective and adaptable maintenance. Unfortunately
most agent-oriented methodologies are not addressing this issue. Requirement traceability is
intended to ensure continued alignment between stakeholders’ requirements and various outputs
of the system development process. In this paper we show how traceability could be applied to
agent oriented development paradigm. In fact, software developers have used agents as a way to
understand, model, and develop more naturally an important class of complex system. The
growth of interest in software agents has recently led to the development of new methodologies
based on agent concepts. However, few agent-oriented methodologies are requirement driven,
or recognize traceability as an important issue to be supported. In this paper we argue that
requirement traceability must be considered in agent-oriented methodologies. In particular we
show how a general-purpose traceability approach can be used in the context of the Tropos
framework. An e-commerce case study is used to demonstrate the applicability of the approach.

Key words: requirements traceability, agent-oriented development.

1 The Introduction

It is well known that software traceability is a significant factor of efficient
software project management and software systems quality. The aim of this
paper is to present some, innovative and consolidated research that supports
traceability through requirements specifications, static and dynamic software
design, models, system architecture models and implementation artefacts. We
apply our traceability approach [1] to Tropos1 approach which is
requirements-driven in the sense that it is based on concepts used during early
requirements analysis. To this end, Tropos adopt the concepts offered by i*
[2], a modeling framework proposing concepts such as actor (actors can be
agents, positions or roles), as well as social dependencies among actors
including goal, softgoal, task and resource dependencies. These concepts are
used for an e-commerce example2 to model not just early requirements, but
also late requirements, as well as architectural and detailed design [3, 4].

The requirement engineering process supports the understanding of the
stakeholders’ goals, as well as the refinement of these goals into
requirements. An important task of this process is keeping track of bi-

1 For further detail and information about Tropos project, see http://www.troposproject.org
2 Based on a realistic e-commerce system development exercise of moderate complexity.

directional relationships between requirements and the development process
artefacts in order to facilitate the maintenance and verification of the system
[5, 6].

During design, traceability allows designers and maintainers to keep track
of what happens when a change request is implemented before a system is
redesigned. Systems evolution requires a better understanding of the
requirements, which can only be achieved by the agility to trace back to their
sources. Traceability provides the ability to cross-reference items in the
requirement specifications with items in the design specifications. Moreover,
test procedures, if traceable to requirements or design, can be modified when
errors are discovered.

It is also worth noting the important relation between traceability and
configuration management. Without the latter it is impossible to trace the
requirements in an appropriate manner. If the system’s outputs were not well
controlled it would be difficult to manage the links between them.

As a consequence of these different uses and perspectives on traceability,
there are wide variations on the format and content of traceability information
across different system development efforts. In fact, a reference model is
needed to facilitate the construction of a requirement traceability scheme [7].

In this paper, we deal with the complexity that arises during agent-oriented
development. In particular we present a general framework, which can also be
useful in the context of agent-oriented development. We sketch the approach
to enhance the Tropos framework to support traceability.

The structure of this paper is as follows: Section 2 presents the models that
support requirement traceability and Section 3 describes the Tropos approach
for agent-oriented development. In the Section 4 we apply Tropos to a case
study and show all requirements traceability phases. Section 5 describes
related work and finally Section 5 concludes the paper.

2. Support for requirement traceability

A general framework to support requirement traceability is presented in [7]. It
includes a meta-model defining the language in which traceability models can
be defined and a reference model that can be customized within the scope
defined by the meta model.

In this paper requirement traceability is defined as the ability to describe
and follow the life of a requirement, in both forward and backward direction,
within the context of four composite, interrelated and parallel information
layers: external, organisational, management and development [7]:
• External Layer represents, for example, constraints on the universe where

the organisation is inserted.

• Organisational Layer represents an element (with goals and decisions) of
the universe.

• Management Layer is related to activities such as management of people,
budget and contracts that can be performed by an organization.

• Development Layer is related to artifacts produced by some development
process.

Elements are related to one another through links with associated
semantics. The notation used to represent the proposed links is based on UML
(Unified Modeling Language) stereotypes.

The reference model is divided in three parts (sub-models) for clarity:
Requirement Management, Design and Rationale.

• Requirement Management sub-model. Traceability, when implemented
correctly, would greatly benefit requirement management, facilitating
requirement understanding, capturing, tracking, validation and
verification (Figure 1).

Figure 1: Requirements Management Sub-model

• Design sub-model is used to refer to any activity that creates artifacts,

including implementation (Figure 2).

0..n

0..n

0..n

0..n

0..n

0..n

1..n

0..n
<<satisfy>

<<resource>>

0..n

0..n

<<responsability

D I A G R A M

CHANGE PURPOSE

DESIGN ELEMENT

P R O G R A M

S U B S Y S T E M

T E S T

 R EQ U I R E M E N T
T A S K

S T A K H O L D E R
0..n 0..n

<<resource>

 I N F O R M A T I O N
0..n <<responsability

0..n

<<resource>

0..n

<<resource><<represents>>

0..n

<<resource>>
0..n

0..n

Figure 2: Design Sub-model

Beyond these sub-models, Toranzo [7] proposes a rational model for
identification and structure of the problems and decisions made (reasoning)
during the software development (Figure 3).

Figure 3: The Rational model

In this paper we outline a process that can be used in order to construct the
models previously described. It includes three activities: Information
Gathering, Information Structuring and Construction of the Traceability
Matrices. The process outlined will be used in conjunction the Tropos
approach (see Section 3). As such it should be applied to the following
activities: Early Requirements, Late Requirements, Architectural Design and
Detailed Design.

0..n

0..n 0..n

<<resource>
0..n 1 1..n

<<satisfy>
0..n

0..n 1

0..n

0..n

<<resource>

0..n

<<responsabilit>

0..n 1

1..n
<<resource>

0..n

0..n

0..n 1

0..n

1..n
<<resource>

0..n

0..n

<<satisfy>

<<resource>
0..n

1..n

0..n

0..n
0..n

<<responsability

0..n

0..n

<<resource>

0..n

0..n <<resource>

EXTERNAL INFORMATION C O N S T R A I N T

CHANGE PURPOSE

ORGANIZATIONAL

S Y S T E M G O A L

R E Q U I R E M E N T

S T A K E H O L D E R

<<resource>

<<resource>

0..n

I N F O R M A T I O N

T A S K

<<responsability

0..n

1..n

1..n

0..n

<<resource>0..n

0..n

<<resource>

0..n 0..n

<<resource>

0..n 0..n

S U B J E C T

C O N S T R A I N T A S S U M P T I O N

P O S I T I O N

S T A K E H O L D E R

 A R G U M E N T

D E C I S I O N

 S Y S T E M G O A L

1..n

<<resource>

ORGANIZATIONAL

0..n

0..n

D O C U M E N T

<<resource>

1..n

<<resource>

Support
Contradi

0..n
<<resource>

0..n
<<resource>

0..n

<<resource>

0..n

1..n

<<resource>

0..n
<<responsibility>

0..n
0..n

0..n <<resource>

1..n

0..n

0..n

<<resource>

<<resource>

0..n

0..n 0..n

1..n

3. TROPOS

Tropos rests on the idea of using requirements modeling concepts to build a
model of the system-to-be within its operational environment [3,4]. This
model is incrementally refined and extended, providing a common interface to
the various software development activities. The model also serves as a basis
for documentation and evolution of the software system.

The proposed methodology spans four phases that can be used either
following the waterfall or the spiral model respectively for sequential and
iterative development [8]:
− Early requirements, concerned with the understanding of a problem by

studying an organizational setting.
− Late requirements, where the system-to-be is described within its

operational environment, along with relevant functions and qualities.
− Architectural design, where the system’s global architecture is defined in

terms of subsystems, interconnected through data, control and other
dependencies.

− Detailed design, where the behavior of each architectural component is
further refined.

Due to space limitation, in the sequel we only comment part of
architectural design phase. An interested reader can find a full description of
all phases in [3,4]. We then show how the information and decisions taken can
be traced.

System architectural design has been the focus of considerable research
during the last fifteen years that has produced well-established architectural
styles and frameworks for evaluating their effectiveness with respect to
particular software qualities.

Tropos has defined organizational architectural styles [9] for cooperative,
dynamic and distributed applications such as multi-agent systems to guide the
design of the system architecture.

These styles are based on concepts and design alternatives coming from
research on organizational theory. From this perspective, a software system is
akin to a social organization of coordinated autonomous components that
interact in order to achieve specific and possibly common goals [3]. This
perspective is intended to reduce as much as possible the impedance mismatch
between the system and its organizational environment.

The evaluation of the styles can be done with respect to software quality
attributes identified as relevant for distributed and open architectures such as
multi-agent ones.

The style is based on means-ends analysis using the non-functional
requirements (NFRs) framework [10]. We refine the identified requirements

to sub-requirements that are more precise and evaluate alternative
organizational styles against them.

In the sequel we outline Tropos’ phases through an e-business example and
make some remarks of how traceability issues can be addressed.

4. Case Study

Media Shop is a store selling and shipping different kinds of media items such
as books, newspapers, magazines, audio CDs, videotapes, and the like. Media
Shop customers (on-site or remote) can use a periodically updated catalogue
describing available media items to specify their order. To increase market
share, Media Shop has decided to open up a B2C retail sales front on the
Internet. With the new setup, a customer can order Media Shop items in
person, by phone, or through the Internet. The system has been Medi@ and is
available on the world-wide-web using communication facilities provided by
Telecom Cpy. It also uses financial services supplied by Bank Cpy. The basic
objective for the new system is to allow an on-line customer to examine the
items in the Medi@ Internet catalogue, and place orders.

An on-line search engine allows customers with particular items in mind to
search title, author/artist and description fields through keywords or full-text
search. If the item is not available in the catalogue, the customer has the
option of asking Media Shop to order it. Details about media items include
title, media category (e.g., book) and genre (e.g., science-fiction),
author/artist, short description, editor/publisher international references and
information, date, cost, and sometimes pictures (when available).

On the next sections we describe how the traceability process previously
outlined can be used in conjunction with the Tropos phases.

4.1. Early Requirements
Description provided in the previous section is sufficient for producing a first
model of an organizational environment (see Figure 4). For more details, see
[3].

In this phase we depict the organizational setting. Quality Packages is a
softgoal dependence that will be stored in the EXTERNAL INFORMATION
of the Requirements Management Sub-model, since it refers to an information
external to the system organization. Increase Market Share, Happy
Customers, Continuing Business goals and Continuous Supply softgoals are
ORGANIZATIONAL INFORMATION, since these softgoals pertain to the
system organisational world. Buy Media Items, Consult Catalogue and Media
Items are REQUIREMENTS of the management layer.

The actors in the Actor diagram for a Media Shop (Figure 4) should be
stored as STAKEHOLDER data to be linked to INFORMATION. This link
is extremely important because stores information about the stakeholders and

their contributions to the system to be. When a change is required, the
stakeholders in question can be questioned about possible doubts as well as
conflicts can be resolved.

Figure 4. Actor diagram for a Media Shop

Having understood the organizational setting one can now decide to

develop software system to support it.

4.2. Late Requirements Analysis
We introduce softgoal contributions to model sufficient/partial positive
(respectively ++ and +) or negative (respectively -- and -) support to softgoals
Security, Availability, Adaptability, Attract New Customers and Increase
Market Share. The result of this means-ends analysis is a set of (system and
human) actors who are dependees for some of the dependencies that have
been postulated. For more details see [3]

In our revised example, we have included softgoals (Availability, Security,
Adaptability) in the late requirements model. The Availability goal represents
the ability of system agents to automatically decide at run-time which
catalogue browser, shopping cart and order processor architecture fit best
customer needs or navigator/platform specifications. Moreover, we could
include different search engines, reflecting alternative search techniques, and
let the system dynamically choose the most appropriate. The second key
softgoal in the late requirements specification is Security. To fulfil it, we
propose to support in the system's architecture a number of security strategies
and let the system decide at run-time which one is the most appropriate,
taking into account environment configurations, web browser specifications
and network protocols used. We also require Adaptability, meaning that
catalogue content, database schema, and architectural model can be
dynamically extended or modified to integrate new and future web-related
technologies.

Buy Media
Items

Media
Producer

Customers
Happy

Customer
Media Media

Supplier

Consult
Catalogue

Continuous
Supply

Continuing
Business

Media Items

Shop
Quality

Packages

Increase
Market Share

Attract New Customer goal is one of the objective of the system so it is
represented as a SYSTEM GOALs. Availability, Security and Adaptability
softgoals or NFRs (Non-Functional Requirements) critical for the next phase
(architectural design).

All tasks pictured in the Figure 5 which we have not been mentioned yet
are functional requirements. All the functional and non-functional
requirements are stored as REQUIREMENTS information.

Figure 5: Rationale diagram for Medi@

Telecom Cpy and Bank Cpy are new stakeholders, so they are added as
STAKEHOLDERS information. We have to store the Internet Services and
Process On-line Money Transactions in EXTERNAL INFORMATION
because both pertain to the outside world of the system but have a great
impact on it.

All information identified in this phase is part of Requirements
Management sub model.

Using the relationship <resource> between ORGANIZATIONAL
INFORMATION and REQUIREMENTS classes (see Figure 1) we can
elaborate a traceability matrix [11]. Using the matrix, we can conclude that
the quantity of relationships between one requirement and all organizational
information determine the main systems’ requirements [11]. We can also
conclude that the organizational information not related with requirements are
not necessary.

In the next section we will present the traceability process applied on the
Tropos architectural phase.

4.3 Architectural Design
The software quality attributes (Availability, Security, and Adaptability),
which we highlighted in the late requirements phase, will guide the selection
process of the appropriate architectural style. The Rational model captures this
information. It will be useful to justify the decision taken.

To cope with non-functional requirements (software quality attributes) and
select the style for the organizational setting, we go through a means-ends
analysis (see [3] for more details) using the non-functional requirements
(NFRs) framework [10]. We refine the identified requirements to sub-
requirements that are more precise and evaluate alternative organizational
styles against them (Figure 6). Considering the Rational model elements we
can store on the SUBJECT element the selection process related to what
organizational style will be used. The architectural styles should be
represented as the POSITION for the SUBJECT. Thus for each SUBJECT
there is a POSITION related to it. The notation used in NFR diagrams (++, +,
--, -) to demonstrate the suitability or not of certain architecture style should
be recorded as the links between the POSITIONs and each one of the
ARGUMENTs. The non-functional requirements will be the ARGUMENTS
for each position, because they are motivations for the decisions taken (i.e. the
choice of Joint Venture architectural style). The Correlation Catalogue [9] will
be stored in the CONSTRAINT element since the decision about what style
will be used is limited to the using of this catalogue. The fact of choosing an
architectural style based on organisational approach and not based on
traditional architectural styles shall be stored in the ASSUMPTION element.

Figure 6. NFR Graph

The NFR framework links can be mapped as follows:
 ++ (make): <support, H>
 + (help): <support, M>
 - (hurt): <contradict, M>
 -- (break): <contradict, H>

Table 1 presents an example of the relationship among the POSITION and

ARGUMENTS elements.

Table 1: Traceability matrix between positions and arguments

<rec>

[POS1]
Pyramid

[POS2]
Join Venture

[POS3]
Composition

[NFR1] Availability <support, M> <support, H> <contradict, M>

[NFR2] Security <support, M> <support, M> <contradiz, H>

[NFR3] Adaptability <support, M> <support, H> <support, M>

[NFR4] System Evolution <support, H> <support, M>

[NFR5] Integrity <support, M> <support, H> <contradict, M>

For example it shows that the Joint Venture Style supports, in a high degree, nthe
following NFR: Availability, Adaptability, System Evolution and Integrity. Whereas
the NFR Security is only addressed in a moderate fashion. Similar analysis can also
be made with respect to the other styles.

5. Related Work

Some agent-oriented methodologies are extensions of object-oriented
methodologies (for example, Gaia [12] and MaSE [13]), while others are
extensions of knowledge engineering methodologies (for example, KGR
[14]).

Gaia makes an important distinction between the analysis (dealing with
abstract concepts) and the design (dealing with concrete concepts) process,
and provides several models to be used at each phase. In essence it constructs
a society of agents, defining the role and capabilities of each individual agent,
and the way the society of agents is structured.

MaSE takes an initial system specification, and produces a set of formal
design documents in a graphically based style. The primary focus is to guide a
designer through the software lifecycle from a prose specification to an
implemented agent system. KGR consists of two viewpoints. The external
viewpoint describes the social system structure and dynamics. It includes an
Agent Model and an Interaction Model. The internal viewpoint is composed
of three models: the Belief Model, the Goal Model, and the Plan Model.
These models specify how an agent perceives the environment and how it
chooses its actions based on this perception.

The comparison of these methodologies is out of scope [15] but we agree
that none of them support requirement traceability explicitly. However some
of them are more easily adaptable because they store some links between their
elements.

6. Conclusions

Requirement traceability has been recognized by many as an important pre-
requisite for developing and maintaining high quality software. In this work
we argue that the Tropos framework can be extended to address
requirements traceability. Our traceability approach is able to record
information from all phases supported by Tropos approach.

The benefits of requirements traceability are manifold: software quality can
be improved since we can check if all stakeholders requirements are
addressed by the system. Similarly, an impact analysis can also be performed
before the implementation of a change request. This is possible because we
requirements impacted by the change can be detected as well as the links
between these requirements and other system components, like design and

implementation,. Hence the change and make effort estimates become more
accurate and consequently we can minimize the time and cost of software
maintenance.

Further work is still required to make a comparison between issues of
requirement traceability in engineering of object–oriented systems versus
multi agent systems, i.e. in what way the requirement traceability methods
differ and the reasons. Proper tool support is also another topic that needs to
be addressed.

7. References

1. J. Castro, R. Candida, A. M. Castor, and J. Mylopoulos, “Requirements Traceability in Agent Oriented
Software Engineering”. Book chapter In Software Engineering for Large-Scale Multi-Agent Systems:
Research Issues and Practical Applications, LNCS 2603, Editors A. Garcia; C. Lucena; F. Zambonelli;
A. Omicini; J. Castro Springer Verlag. 2003.

2. E. Yu, Modelling Strategic Relationships for Process Reengineering. PhD thesis, University of
Toronto, Department of Computer Science, 1995.

3. J. Castro, M. Kolp, and J. Mylopoulos, Towards Requirements-Driven Information Systems
Engineering: The Tropos Project. Information Systems Journal, Elsevier, 2002. Vol 27, pp. 365-89

4. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, A. Perini “Tropos: An Agent –Oriented
Software Development Methodology’”, in Autonomous Agents and Multi –Agent Systems 8 (3): 203-
236, May 2004.

5. B. Ramesh, and M. Jarke, Towards Reference Models For Requirements Traceability. IEEE
Transactions on Software Eng., vol. 27, pp. 58-93, Jan. 2001

6. O. Gotel, Contribution Structures for Requirements Engineering. Ph.D Thesis. Department of
Computing, Imperial College of Science, Technology, and Medicine, London, U.K., 1996.

7. M. Toranzo, A Framework to Improve Requirements Traceability (in Portuguese: Um Framework para
Melhorar o Rastreamento de Requisitos). Ph.D thesis, Centro de Informática daUniversidade Federal
de Pernambuco – UFPE, Brazil, December, 2002.

8. P. Kruchten. The Rational Unified Process: An introduction. Addison-Wesley, 2003.
9. T. T. Do, M. Kolp and A. Pirotte. “Social Patterns for Designing Multi-Agent Systems”, in

Proceedings of the 15th International Conference on Software Engineering and Knowledge
Engineering (SEKE 2003), San Francisco, USA, July 2003.

10. L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional Requirements in Software
Engineering, Kluwer Publishing, 2000.

11. A. Castor, “Requirements Traceability on the Agent Oriented Development Process”. (in Portuguese:
Rastreamento de Requisitos no Processo de Desenvolvimento Orientado a Agentes). Ph.D dissertation,
Centro de Informática da Universidade Federal de Pernambuco – UFPE, Brazil, August 2004.

12. M. Wooldridge, N. Jennings, and D. Kinny The Gaia Methodology for Agent-Oriented Analyis and
Design, Journal of Autonomous Agents and Multi-Agent Systems, 2000.

13. M. Wood, and S. A. DeLoach, “An Overview of the Multiagent System Engineering Methodology”, in
the First International Workshop on Agent-Orientes Software Engineering (AOSE-2000), June, 10,
2000 – Limerick. Ireland

14. D. Kinny, M. Georgeff, and A. Rao, “A Methodology and Modelling Technique for Systems of BDI
Agents”, in W. Van Der Velde and J. Perram, editors. Agents Breaking Away: Proceedings of the
Seventh European Workshop on Modelling Autonomous Agents in a Multi-Agent World
MAAMAW’96, (LNAI Volume 1038). Springer-Verlag, 1996.

15. C. T. L. L. Silva, P. C. Tedesco, J. B. F. Castro, R. C. C. Pinto, “Comparing Agent-Oriented
Methodologies Using NFR Approach”, in Proceedings of the SELMAS 2004 - Software Engineering
for Large-Scale Multi-Agent Systems, Edinburgh, Scotland, 2004.

