
An Agile Reverse Engineering Process
based on a Framework

Maria Istela Cagnin *1, José Carlos Maldonado1, Fernão Stella R. Germano1, Paulo
Cesar Masiero1, Alessandra Chan ♦1, Rosângela Dellosso Penteado2

1Universidade de São Paulo – USP
Instituto de Ciências Matemáticas e de Computação

São Carlos-SP, Brazil, CEP 13560-970
{istela, jcmaldon, fernao, masiero}@icmc.usp.br

ale@grad.icmc.usp.br
2Universidade Federal de São Carlos – UFSCar

Departamento de Computação
São Carlos-SP, Brazil, CEP 13.565-905

rosangel@dc.ufscar.br

Abstract. This paper presents an agile reverse engineering process,
referred to as PARFAIT/RE, which has been abstracted from the use of
a framework-based agile reengineering process, named PARFAIT3. The
proposition of PARFAIT/RE has been evidenced from an analysis done
in a reengineering case study of a medium size system. Several factors
collaborate to make PARFAIT/RE agile: a) active participation of
legacy system users to validate the artifacts created and to suggest new
requirements or the removal of requirements that do not belong to the
business context; b) incremental approach; c) prototyping paradigm
feasible from the framework instantiation; and d) use of an analysis
pattern language (GRN), which was the basis for building the GREN
framework. GRN belongs to the business resource management domain
and supports object oriented modeling of procedural legacy systems.
The analysis models created are used to support the framework
instantiation.

1 Introduction

The concern of organizations with regards to evolving their legacy systems, so as to
assure their competitiveness in the current market, is remarkable. On the other side,
there is resistance in the transition to a new system, because any problem or non-

* Financial support from FAPESP grant 00/10881-4
♦♦♦♦ Financial support from CNPq
3 PARFAIT is the acronym for Processo Ágil de Reengenharia baseado em FrAmework no
domínio de sistemas de Informação com vv&T (in Portuguese), which means “Framework-
based Agile Reengineering Process in the Information System Domain with VV&T”.

foreseen occurrence may put the business at risk, and may even lead it into
bankruptcy. For legacy systems evolution, there are three alternatives: 1) development
of a new system, 2) reengineering of the legacy system, or 3) legacy system
documentation recovery to support maintenance activities. This paper aims to supply
support to the third alternative in a rapid and efficient way.

The traditional reverse engineering approaches do not provide an agile modeling
[5] because: a) several types of artifacts are supplied, some may be unnecessary, and
others may contain irrelevant information; b) possible lack of effective user
participation during the whole reverse engineering both to validate the models
produced and to help software engineers to better understand the requirements; c)
possible lack of an effective approach that supports the domain knowledge, the
recovery of existing requirements or the elicitation of new ones; etc.

From the analysis of this situation, the possibility of using PARFAIT – an agile
reengineering process [6, 7] - to abstract an agile reverse engineering process has
been noticed. Considering the features of agile methodologies and techniques [1, 18,
5] of PARFAIT, the reverse engineering process based on a prospective case study,
referred to as PARFAIT/RE, was abstracted. PARFAIT/RE is considered agile,
because it is possible to deliver a light, updated and validated documentation of the
legacy system, very early in the reverse engineering process, necessary for
maintenance people to evolve systems more effectively. It is important to mention
that the PARFAIT process has been initially created to support system reengineering,
without distinguishing reverse and forward engineering phases.

The aim of this paper is to show a summary of PARFAIT/RE activities, insights
and lessons learned with the reengineering prospective case study carried out.

In Section 2, the related work is discussed. In Section 3 PARFAIT is presented. In
Section 4, the abstraction of the PARFAIT/RE agile reverse engineering process
based on a reengineering prospective case study is described and at the end of that
section a PARFAIT/RE activities summary is presented. In Section 5 the conclusions
and suggestion for future works are discussed.

2 Related Work

The object oriented reverse engineering of procedural legacy systems is considered by
several authors. Penteado proposes a reverse engineering method – Fusion/RE to
obtain OO analysis models from the analysis of procedural legacy code [11]. Costa
presents Fusion/RE-I, which is a method inspired on Fusion/RE concepts and ideas
and supplies mechanisms to abstract functional and structural views from operational
aspects and data available via the user interface [13]. Cimitile et al. present a method
to decompose legacy systems in objects [14]. The object identification is centered on
the storage of persistent data through files or relational database tables, while
programs and routines are candidates to implement methods. None of these
approaches bear on user participation during reverse engineering. None supply
knowledge on the domain in which the legacy system is inserted and none supply an
effective way to elicit new user’s requirements.

According to Pressman [10], the prototyping paradigm is used for requirements
gathering and can be very effective for that purpose. That paradigm is used by
PARFAIT/RE to support requirements elicitation.

Several tools can be used to support the prototyping paradigm. One of them is a
framework because it allows applications to be rapidly created, more than if they are
built from scratch. A framework is a set of pre-fabricated software blocks that
programmers can use, extend or adjust to build specific computing solutions [15]. The
framework GREN [3] is being used in PARFAIT/RE for that purpose.

GREN supports applications development in the business resource management
domain. It was built based on the GRN pattern language [4]. The programming
language used to implement GREN is Smalltalk [2] and the object storage is made in
the MySQL [17] relational DBMS. The creation of the prototype is conducted using
the GRN pattern language, which results in a class diagram of the legacy system
abstraction. Based on these diagrams, GREN framework preprogrammed classes are
used to create the prototype code. GREN instantiation can be done through GREN-
Wizard [3], a tool that provides facilities for selecting the patterns used and generates
the new prototype classes and the MySQL database tables.

The GRN pattern language is formed by fifteen analysis patterns that provide
inexperienced developers enough information for developing new systems in the
business resource management domain, together with alternative solutions. This
language has a specific and well-defined domain, concentrated in the rental, trade and
maintenance of business resources and is expressed in UML (Unified Modeling
Language) [21].

In many software engineering situations, the software engineer’s knowledge of the
domain is incomplete and he/she may have to learn more about the domain from the
system code [20]. But this task is hard to do when the system is obsolete and has
passed through many maintenance activities. An analysis pattern language, that
belongs to the same domain as the legacy system, supplies the software engineer with
the necessary knowledge about the domain, without demanding him to visit the code,
saving time and effort. That advantage and the support to prepare the OO
documentation of the legacy system have been observed during some uses of
PARFAIT [7, 8].

A way to analyze an agile reverse engineering approach is observing if it fits the
Agile Modeling (AM) principles. AM is a practice-based process that describes how
to be an effective modeler. Current modeling approaches can often prove
dysfunctional. In the one extreme, modeling is non-existent, often resulting in
significant rework when the software proves to be poorly thought through. The other
extreme is when excessive models and documents are produced, which slows the
development efforts down to a snail’s pace [5].

3 PARFAIT Agile Reengineering Process

The main purpose of the PARFAIT agile reengineering process [6, 7] is to migrate
small and medium size procedural systems to the object oriented approach and assure
that the software product, resulting from the reengineering process, is reliable and

accepted by the users. With this purpose, it uses i) the GREN framework as computer-
aid, which builds the system prototype, facilitating the requirements elicitation and
the migration of the legacy systems to the Smalltalk language and MySQL DBMS; ii)
GRN pattern language, that supports legacy system documentation, elaboration, and
knowledge about the legacy system domain; iii) users interaction during the process
application so that the product is evaluated as it evolves, and; iv) functional tests [16],
applied during the process.

The framework based computer-aid is an important issue to contribute to the
process agility, as it provides a system prototype as soon as possible. This prototype
evolves during the PARFAIT process application through successive versions, until it
reaches the definitive system.

PARFAIT supports testing activities to find the business rules and specific
functionalities of the system, as well as to validate the system produced. For this, it
uses, in its current version, the functional criteria Equivalence Classes Partitioning
and Boundary Value Analysis [16]. The process documentation is based on the static
structure provided by RUP [12].

In Fig. 1, the PARFAIT process is illustrated with the activities that are performed
during the Inception, Elaboration, Construction, and Transition phases. The original
objectives of these phases have been replaced by reengineering specific objectives.

Obtain familiarity
with the frame-
work domain

Compare the non-
functional frame-

work features with
those of the legacy

system

Observe the legacy
system domain in

relation to the
framework domain

INCEPTION

Elaborate the
reengineering
project plan

Develop a use case
diagram and document

the test cases

Develop the
system class

diagram

Document the
system business

rules

ELABORATION

Document the
changes done in

the class
diagram

Write the system
user's manual

CONSTRUCTION

Develop an OO
system

prototype

Adapt the OO
system

prototype

Execute the test
cases in the OO

system
prototype

TRANSITION

Convert the
legacy system

database

Train the end
users

Test the OO
system

Legend:
Milestone at the end of each
phase

Iterative and incremental
activity

Previous activity of another
phase

Optional activity

Fig. 1. PARFAIT overview

It is important to stress that the software engineer may return to any of the process
activities, at any phase, in order to refine artifacts already produced.

In PARFAIT, there are some optional activities, and their execution should be
decided by the person responsible for the reengineering project. The activities may
pass through several iterations.

Before moving from a phase to another, during process activities iterations, it is
necessary to perform verifications by means of milestones, represented by triangles
on Fig. 1. Their objective is to evaluate the reengineering process progress, deciding
to continue or stop its application.

After completing each artifact, verifications and validations are carried out. These
may be performed applying “ad hoc” techniques or using the OORT’s [19] reading
technique. The last case must be applied only to some artifacts produced using UML
notation. The artifacts with easy representation are also validated by users (for
example: requirements document, use case diagrams, etc).

After the conclusion of each artifact produced by an activity, the software
configuration management is performed, so that its versions may be recovered at any
time, during and/or after the conclusion of the reengineering project. A version
control management tool must be used to support this task.

4 PARFAIT/RE: an Agile Reverse Engineering Process

The PARFAIT/RE process, summarized at the end of this section, has been abstracted
from a reengineering prospective case study of a medium size legacy system using the
PARFAIT process. It has been observed that iterations in certain activities of
PARFAIT are not necessary when one wants to do only reverse engineering.

The system submitted to reengineering is an University library control system,
implemented in Clipper with about 6 KLOC. Further information about this
reengineering case study is available in [8].

A user of the library control legacy system (member of the University staff) has
participated of the whole process conduction. This allowed the quality evaluation,
although superficial, of the reengineering process product results. Product evaluation
with different user types (library attendants, students, teachers, etc), both of the legacy
system and of other library systems, shall be conducted for the product quality to be
more efficiently evaluated.

Information on the team, responsible for the PARFAIT application, has been
omitted, because the process was applied individually by a software engineer.

Table 1 shows the history of PARFAIT activities iterations performed during the
reengineering prospective case study, highlighting with shades those that should be
done when the interest is to do only reverse engineering. These activities, as well as
the others activities that compose PARFAIT, will be commented on during the
presentation of the case study.

It has been observed that the two initial activities of PARFAIT Inception phase are
conducted independently of the form in which the process is used, that is, either for
reengineering or to conduct reverse engineering, as they supply the context of the
legacy system domain in relation to that of the GREN framework.

After running the legacy system for a short time in the activity “Observe the legacy
system domain in relation to the framework domain”, it was observed that the GREN

framework is useful to support the reverse engineering of the library control legacy
system. This is because the main transaction of the legacy system is the book rental
control. In this activity, the elaboration of the artifact “Requirements document” has
been started, establishing the system general objectives.

Table 1. History of reengineering case study activities iterations
Iterations
numbers

Activities

1 Obtain familiarity with the framework domain

2 Observe the legacy system domain in relation to the framework domain

3 Compare the non-functional framework features with those of the legacy system

4 Elaborate the reengineering project plan

5, 18, 25 Develop an use case diagram and document the test cases
6, 8,

10,15,22 Develop the system class diagram
7,

9,11,16,23 Document the changes done in the class diagram

12 Develop an OO system prototype

13, 19, 26 Execute the test cases in the OO system prototype

14, 21 Document the system business rules

17, 20, 24 Adapt the OO system prototype

27 Write the system user’s manual

28 Convert the legacy system database

29 Test the OO system
not

performed Train the end users

The two following activities “Compare the non-functional framework features with

those of the legacy system” and “Elaborate the reengineering project plan” should
not be done, as they aim to satisfy specific features of the system reengineering. Due
to space limitation, only the last version of the artifacts produced is shown in this
paper.

In the Elaboration phase, several iterations were conducted to complete the activity
“Develop a use case diagram and document the test cases”. In this activity, it was
observed that a long time was spent (552:50 hours), mainly on the artifacts related to
test: 6 hours to produce the artifact “Use case diagram”, 500 hours to produce the
artifact “Test case documentation”, 36 hours to produce the artifact “Equivalence
class documentation” (Table 2), 5 hours to produce the artifact “Data dependence
diagram among the use cases” and 5:50 hours to complete the artifact “Requirements
document”, started on the Inception phase. In the artifact “Equivalence class
documentation”, 174 classes were created, enumerated as shown in Table 2, and in
the artifact “Test case documentation”, 354 test cases were documented. The majority
of these test cases were generated from the equivalence classes documented.

The artifacts “Use case diagram” and “Requirements document” were created as
the legacy system was executed. In this case study, the worker4 has described initially

4 Person that executes the activity, according with RUP notation.

all the system features as functional requirements and then, grouped them by
concerns5, as can be seen on Table 3. The non-functional requirements have been
obtained through interviews with the user and were documented in the artifact
“Requirements document” in the same form of the functional requirements. The user
effectively participated in the validation of the artifacts “Use case diagram” and
“Requirements document”.

Table 2. Fragment of the equivalence class documentation for the book loan feature

Input Restrictions Valid Class Invalid Class
Student code Sequence of 8 numeric characters (1)

Sequence of characters (2)
Different sequence
of 8 numeric characters (3)

Existence of student code Existence (4) Non-existence (5)

Exemplar code Sequence of up to 6 numeric
characters (8)

Sequence of character (9)
Sequence of more than 6 numeric
characters (162)

Status of the exemplar Book not loaned (10)

Book loaned (11)

Loan date Day and month valid (16)
0100 < year <= 2999 (18)

Day and month not valid (17)
Year < 01006 (19)

… … …

Table 3. Fragment of the requirements document for the library system
REQUIREMENTS DOCUMENT

General Objectives: The library control system aims to manage the circulations of the collection.

Functional Requirements:
Concern: Book
1. The system should record the insertion, alteration and removal of new books. Data related to the title,

subtitle, U.D.C. (Universal Decimal Classification) class, P.H.A. (Author Classification Table) class
and area will be recorded. The authors and subjects contained in the book and its code representation
on the system are also listed.

2. The system should record the insertion, change and removal of the new book exemplar related to a
book previously recorded that now will be resources to be lent.

3. …
12. The system should provide the title of the books recorded in the system, besides showing the book

recording data, i.e. title, subtitle, U.D.C. class, P.H.A. class, area, authors, sub-area and subjects.
Concern: Student
13. The system should record the insertion, change and removal of the new students who will be the

customers who will borrow book exemplars. Data about the student’s name, situation and course,
besides his code representation in the system will be recorded.

14. …
16. The system should provide information about the recorded students, as well as his personal data such

as name, situation, course and code.
Concern: Borrowing
17. The system should record the borrowing of a book exemplar. The code of the student who will

borrow the book will be informed. The data related to the other books already borrowed by the
student should be shown. The book is identified by its register number and the current date as well as
the date of the borrowing is shown and they may be changed by the library clerk.

5 Group of requirements that has functional or non-functional interdependency.
6 the year is converted to 1900 plus year typed

continue
18. The system should record the return of the book. The code of the student who is returning back the

book is provided and the system should show the exemplar borrowed by him/her. The book register
number is provided to the system, which shows the current date as well as the book return date and
they may be changed by the library clerk. The insertion of a note is also allowed.

19. …
21. The system should allow the printing of a receipt at the book return date.

Non-functional Requirements
Concern: Security Access
22. The system should have access restrictions for two groups of users (student and administrator). The

group defined as “student” should have permission only to read and consult the collection. The
group defined as “administrator” should have access to read and edit all functions.

Concern: Performance
23. The system should accomplish the borrowing operation at a speed of 3.000 milliseconds for each

data processed per register.
Concern: Security Copy
24. The system should run a backup on a daily basis, at the end of the working day.

No business rule has been identified during the legacy system execution in the

activity “Develop a use case diagram and document the test cases”.
Several iterations have been executed in the activity “Develop the system class

diagram” to obtain the final version of the corresponding artifact (Fig. 2). GRN
patterns: one-��������	 �
�	 �������, two-� �������	 �
�	 �������, and four-����	
�
�	������� have been identified to compose the diagram. Their respective classes
are shown in the upper part of Fig. 2.

The software engineer has used the patterns script, created and available in the
Rational Rose tool [21], to support the preparation of the artifact “System class
diagram”. The system classes are represented as subclasses of the patterns classes,
with the attributes and methods specific of the system, and are documented in the
activity “Document the changes done in the class diagram”. Patterns functionalities
(methods, relationships, classes, and attributes), used in the activity “Develop the
system class diagram”, but not necessary to represent the legacy system, are also
documented in this activity.

UML notes shown in the artifact “System class diagram” (Fig. 2) are used to
indicate the role of the pattern classes, when necessary, and the implementation of the
business rules, when they exist. Some types of data (DiscreteList, TableList,
and MultivalueList), specific of the GREN framework, have been used in the
artifact “System class diagram” to represent some data types not supported by the
pattern language.

The activity “Write the system user’s manual” has not been considered in the agile
reverse engineering, because it deals with the preparation of the user manual for the
new system implemented, which does not occur when the objective is to conduct the
reverse engineering.

Next, in the Construction phase, the artifact “OO System prototype” has been
created (Fig. 4) in the activity “Develop an OO system prototype”, to validate the
artifact “System class diagram” and to elicit new requirements and identify/refine
business rules not previously identified. The artifact “OO System prototype” has been
created with support of the instantiation tool GREN-Wizard [3].

Following, the first iteration of the activity “Execute the test cases in the OO
system prototype” has been performed. In this activity, test cases documented in the
artifact “Test case documentation” have been executed on the prototype. For this, the
worker followed the execution order of the artifact “Data dependency diagram
among the use cases”.

Variante: No
source party
(Pattern 4)

Instanciable
Resource
(Pattern 2)

Rental Resource
(Pattern 4)

ExemplarBook
aquisitionDate : Date
source : Boolean
publicationYear : Integer
city : String
nrOfPages : Integer
volume : Integer
edition : Integer
releaseForLoan : Boolean
nrFirstExemplar : Integer

listByNumber() Publisher
idCode : Integer
name : String
address : String
district : String
city : String
state : String
zipCode : Integer
phone : Integer
fax : Integer
contact : String
site : String
e-mail : String

listByIdCode()
ListByDescription()

<<TableList>>1..n

0..1

1..n

0..1

has

Student
status : String

listStudent()

Course
idCode : Integer
description : String
level : DiscreteList [GR, FC, PR, PG e CT]

listByIdCode()
listByDescription()

<<TableList>>

n

1..1

n

1..1

enroll on

Author
idCode : Integer
firstName : String
lastName : String

listByFirstName()
listByLastName()

<<MultivalueList>>

Book
subTitle : String
CDUClass : String
PHAClass : String

updateSubject()
updateSubArea()
updateAuthor()

0..n

0..n

0..n

0..n

has

Subject
idCode : Integer
description : String

listResourceByIdCode()
listResourceByDescription()

<<MultivalueList>>

0..n

0..n

0..n

0..n

has

Variante: Nested Type
(Pattern 1)

Variante: Nested Type
(Pattern 1)
T ype: Area

Variante: Nested Type
(Pattern 1)
NestedType: SubArea

SubArea

listResourcesByIdCode()

Area

1..1 0..n1..1 0..n
contain

BR1
Calculing due date.
For teacher the Para
professores period is
7 days and for others
users is 3 days.

BR2
Assigning fineRate if
exemplar is retorned
after due date.

TypeResource
idCode : Integer
description : String

<<!>> listResourcesByType()

<<Pattern 1>>Resource
idCode : Integer
description : String

listByIdCode()
listByDescription()
calculateQttyOfAvailableInstances()

<<Pattern 1>>

n 0..1n 0..1

has

SourceParty
code : Integer
name : String

listSourceParties()
getRentalsBySourceParty()

<<Pattern 4>>

DestinationParty
code : Integer
name : String

listDestinationParty()
getRentalsByDestinationParty()

<<Pattern 4>>
ResourceInstance

number : Integer
localization : String
status : Boolean

isAvailable()
getRentalsByResource()
listMostRentedResourcesInPeriod()

<<Pattern 2>>
n

1

n

1

has

ResourceRental
number : Integer
startingDate : Date
dueDate : Date
returnDate : Date
observations : String

rent()
return()
printRentalConfirmation()
printReturnConfirmation()
listRentalsByPeriod()
listOverdueRentals()
calculateEarnings()

<<Pattern 4>>

n0..1 n0..1
makes

n

1

n

1
ask for

1

n

1

n
related to

FineRate
nrOfDelayedDays
fineRate

calculateFine()

<<Pattern 4>>

n

1

n

1

is applied to

Loan

calculateReturnDate()
listByNumber()
listByStudent()

GRN patterns classes used

System classes

Fig. 2. Library system class diagram

Business rules were not found in the activity “Execute the test cases in the OO
system prototype”, because the worker observed that they were not implemented on
the legacy system. But, the user requested implementation of a business rule (BR1)
related to the period authorized for the user to stay with the book. This period is
different for teachers (seven days) and other users (three days). This business rule has
been documented in the activity “Document the system business rules” (Elaboration
phase) and the artifact “Business rules documentation” has been created. This artifact
facilitates the understanding and the implementation of the business rule in a future
maintenance activity or when the final objective is the legacy system reengineering.
The artifact “System class diagram” has also been updated with the
calculateReturnDate method on Loan class (Fig. 2).

Functionalities that did not belong to the legacy system were identified in the
activity “Execute the test cases in the OO system prototype” and have been
documented. Each functionality was analyzed by the user and he decided to maintain

it or not in the system. Furthermore, the worker observed several data consistencies
on the legacy system not present on the prototype. This was documented in the
activity “Document the changes done in the class diagram”.

A demonstration of the OO system prototype has been done for the user, running it
concomitantly with the legacy system. In this moment, the user requested the
implementation of another business rule (BR2) related to the charge of a fine rate
when the library user returns the book after the due date. This business rule has been
documented in the activity “Document the system business rules”. The artifact
“System class diagram” has been updated again to represent the business rule
implementation. For this, the class FineRate, which is a variant participant of
pattern 4, has been considered in the artifact “System class diagram”.

The activities “Adapt the OO system prototype”, “Convert the legacy system
database”, “Test the OO system” and “Train the end users” have also not been
considered in the reverse engineering, as they are intrinsically related to the system
reengineering.

After the completion of each activity iteration, an inspection on the artifacts
produced was conducted, according to the verifications previously established on the
PARFAIT documentation. All the artifact versions were submitted to the VersionWeb
[9] configuration control system.

In Fig. 3, the form for book loan of the legacy system is presented and in Fig. 4 the
form of the artifact “OO system prototype”, created by the instantiation of the GREN
framework in the activity “Develop an OO system prototype”, is shown. At the
bottom part of the legacy system form, a list with all the books loaned to the student
that is doing the loan, is presented. In the artifact “OO system prototype”, this list is
obtained through the button List located at the form upper part. The functionalities of
the prototype form bottom part (Preço total, Desconto total and Total final) do not
belong to the legacy system domain, but were inherited from the framework. When
the aim is to conduct only reverse engineering, that is not considered, as in this case
the objective is to use the prototype just to elicit new requirements and identify/refine
business rules and functionalities specific of the system.

Fig. 3. Legacy system form for book loan

Fig. 4. System prototype form for book loan

• PARFAIT/RE

At the beginning, the software engineer decides if the framework may be used, by
observing the restrictions and functionalities inherent to its domain. For this, it is
necessary to perform the activities “Obtain familiarity with the framework domain”
(it is not mandatory if the worker has already familiarity with it) and “Observe the
legacy system domain in relation to the framework domain”.

At least a worker of each role (analyst, programmer, tester, database administrator,
etc), that will participate in the agile reverse engineering, must have knowledge about
the framework domain. For this, in the activity “Obtain familiarity with the
framework domain”, it is necessary to read the framework documentation and to run
systems resulting of its instantiations. A questionnaire, provided by PARFAIT, must
be answered by workers to evaluate their knowledge about the framework domain and
then follow the process application guidelines.

In the activity “Observe the legacy system domain in relation to the framework
domain”, the legacy system is executed in order to observe its features, but the
worker must not worry with features details.

If the framework may be used to support reverse engineering, then the elaboration
of the artifact “Requirements Document” is started and the system general objectives
are defined. Test cases and test tools used on legacy system development are
recovered to be used, if they exist, aiming at the reduction of reverse engineering
time.

Next, in the Elaboration phase, the legacy system is executed to provide familiarity
with details of its features and to document them on a use case diagram (activity
“Develop an use case diagram and document the test cases”). Each feature is
considered as a functional requirement and is documented, by concerns, in the artifact

“Requirements Document”, and as a use case in the artifact “Use case diagram”. The
use case description is written based on the feature details, according to the
knowledge obtained from its execution. The worker uses input data to run each
system feature and obtains the respective output data. These compose each test case
that is documented in the artifact “Test case documentation”. Other test cases are
created from test requirements established by the Equivalence Classes Partitioning
and Boundary Value Analysis functional test criteria.

The non-functional requirements are elicited from interviews and questionnaires
applied to users and they are also documented in the artifact “Requirements
Document”.

During the legacy system execution, business rules, if they exist, are identified and
documented in an appropriate document named “System business rules
documentation”. These business rules must be represented as
methods/classes/relationships/attributes in the artifact “System class diagram” that
will be created afterwards.

After elaborating the artifacts “Use case diagram” and “Requirements
Document”, it is necessary to submit it to validation by the legacy system users, who
may request new requirements inherent to the organization or the removal of others.

The artifact “System class diagram” is produced in the activity “Develop the
system class diagram” from the GRN pattern language and from the artifact “Use
case diagram”. For this, the worker must identify which GRN patterns must be used,
observing chunks of the legacy system documentation that belong to the GRN
domain. After each pattern is identified, the worker reuses the structure section of the
pattern documentation (that is, classes, relationships, attributes, and operations, that
represent the solution proposed by the pattern) to support the artifact “System class
diagram” elaboration.

The script available on the Rational Rose tool [21] containing all classes,
relationships, attributes and operations that represent each GRN pattern structure, can
be used to facilitate and to speed up the elaboration of the artifact “System class
diagram”.

It is stressed here that there may be legacy system functional requirements that
cannot be represented by the pattern language and, consequently, will not be obtained
from the GREN framework.

Another point is that pattern language patterns may represent functional
requirements not included in the legacy system. The software engineer has to consult
the users whether they should or not be kept in the documentation that is being made.
This is a way to elicit new requirements that belong to the system domain and may be
useful for the organization management.

In both cases, the functional requirements are represented in the artifact “System
class diagram” and documented in the activity “Document the changes done in the
class diagram”.

Then, in the Construction phase, a first prototype is generated in the activity
“Develop an OO system prototype”.

The documented tests are applied on the prototype (activity “Execute the test cases
in the OO system prototype”), so that its behavior may be compared to that of the
legacy system, in order to refine or identify new business rules and new specific
functional requirements, not previously identified. This is done as follows:

a) each result is compared to the one obtained by the documented test case;
b) if the result is different from the one expected, it is necessary to update the

artifact “Use case diagram” (if the result represents a new identified or refined
requirement), as well as the artifact “System class diagram”. In this case,
methods, that represent the identified or refined functional
requirements/business rules, should be added to the system classes;

c) if the result is the same as expected, it is not necessary to update the diagrams.

The artifact “OO system prototype” is also used to elicit new requirements. This is
done during prototype demonstration to users, which it is executed concomitantly with
the legacy system. If the new requirements suggested by the users are equivalent to
patterns of GRN pattern language then a new system prototype is generated.

It is important to mention that all activities described in this section are performed
in an incremental way and most of the artifacts elaborated are validated by users.

These guidelines identify a set of activities that, in fact, characterizes an agile
reverse engineering based on framework, in agreement with the core principles of
Agile Modeling: 1) Software is the primary goal (the goal is to produce software and
not documentation useless), 2) Enabling the next effort is the secondary goal (to create
enough documentation so that the software evolution can be effective on the next
version), 3) Travel light (to create just enough models and documentation to get by),
4) Assume simplicity (to assume that the simplest solutions is the best solution), 5)
Embrace change (to accept the fact that change happens and requirements can change
during project), 6) Incremental change (to embrace change through incremental
approach), 7) Multiple models (each artifacts is appropriate for some situations and
not others, then it is necessary to use multiple models to describe software systems),
8) Quality work (to invest the effort to make permanent artifacts of sufficient quality);
9) Rapid feedback (to work closely with customers to understand their requirements
and validated them).

5 Conclusions and Suggestions for Future Works

The results of an iterations analyze of activities done in a reengineering prospective
case study of a medium size system, using the PARFAIT agile reengineering process,
were used to abstract an agile reverse engineering process, referred as PARFAIT/RE.
These results have been positive, but will be validated in a case study specific of
reverse engineering using the process abstracted, that will be planned and conducted
in the near future.

From the reengineering prospective case study conducted, it has been observed that
the documentation produced was sufficient to allow the legacy system understanding
and was efficient to support the reengineering. We infer that the documentation
produced would also be efficient to support maintenance activities on the legacy
system. This will be verified in a future case study.

It has been observed that the framework usage, based on the pattern language,
promotes reuse of analysis information and provides a system prototype, as fast as
possible. It is inferred that this may decrease the time spent in reverse engineering.

With this kind of language, it was possible to obtain the legacy OO documentation,
reusing the classes belonging to the patterns structure used.

None of reverse engineering traditional approaches, that the authors are aware of,
bear on user participation during reverse engineering as it occurs in PARFAIT/RE.
Furthermore, they do not use neither an analysis pattern language to support the
creation of the legacy system OO documentation, nor a prototyping paradigm based
on frameworks and not even functional tests, to support the requirements elicitation.

The patterns of the analysis pattern language represent requirements that belong to
a specific domain. Then, the patterns may bring new requirements not present in the
legacy system, but that are interesting for the corporation. On the other hand, the
legacy system requirements, not present in the pattern language, can collaborate for
its evolution in order to support the requirements elicitation of a larger number of
systems. Therefore, the use of pattern languages is an efficient way to support the
requirements elicitation both for new systems development and for reverse
engineering of legacy systems.

The test cases that have been used to run the legacy system are executed on the
prototype, created from the framework instantiation, to identify new requirements and
business rules. The system prototype can also be used to elicit new requirements
through the prototype demonstration to users, which is executed concomitantly with
the legacy system. If the new requirements suggested by the users are compatible to
the patterns of GRN pattern language then a new system prototype is generated. Thus,
the OO system prototype has also been used as an efficient way to support the
requirements elicitation.

It has been observed, with the case study conducted, that a large amount of the
effort spent is related to VV&T (Verification, Validation and Test) activities. A way
to reduce VV&T time and costs is to associate test cases with each pattern of the
pattern language. Thus, it would be possible for the software engineer to reuse the test
information both when PARFAIT is used for reengineering as well as when
PARFAIT/RE is used to conduct reverse engineering, without compromising the
quality of the artifacts produced.

References

1. Abrahamsson, P.; Salo, O.; Ronkainen, J.; Warsta, J. Agile Software Development Methods.
Review and Analysis. ESPOO (Technical Research Centre of Finland) 2002. VTT
Publications n. 478, 107 p.

2. Beck, K.; Cunningham, W. Using pattern languages for object-oriented programs. Technical
Report n. CR-87-43, 1987.

3. Braga, 2003. A Process for Construction and Instantiation of Frameworks based on a Domain-
Specific Patterns Language. Sc.D. Thesis, ICMC-USP, São Carlos-SP, Brazil, 224 p. (in
portuguese).

4. Braga, R.T.V.; Germano, F. S. R.; Masiero, P. C. A Pattern Language for Business Resource
Management. In: Annual Conference on Pattern Languages of Programs, Monticello,
Illinois, EUA, v.7, p. 1-33, August, 1999.

5. Ambler, S. W.; Jeffries, R. (2002). Agile Modeling: Effective Practices for Extreme
Programming and the Unified Process. John Wiley & Sons; 1st edition, March.

6. Cagnin, M.I.; Maldonado, J.C.; Penteado, R.; Germano, F. PARFAIT: Towards a
Framework-based Agile Reengineering Process. In: Agile Development Conference, Salt
Lake City, Utha, EUA, 25-29 June, 2003.

7. Cagnin, M.I.; Maldonado, J.C.; Penteado, R.; Germano, F. PARFAIT: Definition and
Application Example. Working Document, ICMC-USP, São Carlos-SP, Brazil, February,
2003 (in portuguese).

8. Chan, A.; Cagnin, M.I. Application of PARFAIT Agile Reengineering Process in a Library
Control Legacy System. Working Document, ICMC-USP, May, 2003 (in portuguese).

9. Soares, M.D; Fortes, R.P.M.; Moreira, D. A. VersionWeb: A Tool for Helping Web Pages
Version Control. Proceedings of the International Conference on Internet Mutimedia.
Systems and Applications, pp. 275-280, Las Vegas, USA, 2000.

10. Pressman, R. S. Software Engineering: A Practitioner’s Approach. Publisher: McGraw-Hill,
Fifth edition, 2001.

11. Penteado, R. A. D. (1996). A Method for Object Oriented Reverse Engineering. Sc.D. Thesis –
Instituto de Física de São Carlos-USP, São Carlos-SP, Brazil, 237 p. (in portuguese).

12. Kruchten, P. The Rational Unified Process: An Introduction. Second Edition, Addison-
Wesley, 2000.

13. Costa, R. M. (1997). Fusion-RE/I: A Reverse Engineering Method to Support Software
Maintenance. M.Sc. Dissertation. ICMC-USP, São Carlos-SP, Brazil, 112 p. (in portuguese).

14. Cimitile, A.; De Lucia, A.; Di Lucca, G. A.; Fasolino, A. R. (1999). Identifying objects in
legacy systems using design metrics. The Journal of Systems and Software, n. 44, p. 199-211.

15.Taligent Inc. Building Object-Oriented Frameworks. URL:http://www-106.ibm.com/
developerworks/java/library/oobuilding/?dwzone=java. Accessed: February 2002.

16. Myers, G. J. The art of software testing, Wiley, 1979.
17. MySQL (2002). MySQL Reference Manual for Version 3.23. URL: http://web.mysql.com/.

Acessed: February, 2002.
18.Turk, D.; France, R.; Rumpe, B. Limitations of Agile Software Processes. In: 3rd

International Conference on Extreme Programming and Agile Processes in Software
Engineering, Alghero, Sardinia, Italy, p. 43-46, May, 2002.

19. Travassos, G.; Shull, F.; Fredericks, M.; Basili, V. (1999). Detecting Defects in Object-
Oriented Designs: Using Reading Techniques to Increase Software Quality. In: Conference
on Object-Oriented Programming, Systems, Languages, and Applications, Denver, Colorado,
November.

20. Rajlich, V.; Wilde, N. The Role of Concepts in Program Comprehension. In: Proceedings
of the 10th International Workshop on Program Comprehension.

21. Rational Rose Corporation. URL: www.rational.com. Acessed: January, 2003.

