
Integration between Organizational Requirements and
Architecture

Lúcia R. D. Bastos and Jaelson F. B. Castro

 Centro de Informática, Universidade Federal de Pernambuco,
Av. Prof. Luiz Freire S/N, Recife PE, Brazil 50732-970, +1 5581

{{lrdb, jbc}@cin.ufpe.br

Abstract. Software systems of today are characterized by increasing size,
complexity, distribution, heterogeneity, and lifespan. Understanding and
supporting the interaction between software requirements and architectures
remains one of the challenging problems in software engineering research. To
address these challenges we are investigating the relationship between the
requirements and software architecture.In this work we show an approach for
this integration of systems requirements and software architectures within the
context of the Tropos project.

1. Introduction

Requirements Engineering and Software Architecture have become established areas
of research, education and practice within the software engineering community.
The requirements engineering is concerned in identifying the purpose of the system
and the context in which it will be used. The software architecture has long been
recognised to have a profound impact on the achievement of non-functional goals
("ilities") such as availability, reliability, maintainability, safety, confidentiality,
evolvability, and so forth.

There is a clear relationship between requirements and architectures. In spite of
this, evolving and elaborating system requirements into a viable software architecture
satisfying those requirements is still a difficult task, mainly based on intuition.
Understanding and supporting the interaction between software requirements and
architectures remains one of the challenging problems in software engineering
research.

In this paper we present an approach for the integration of systems requirements
and software architectures within the context of the Tropos project, an information
system development framework that is requirements-driven in the sense that it adopts
concepts used during early requirements analysis [3]. This paper is structured as
follows. Section 2 presents the Tropos project, including a modeling framework for
requirements analysis namely the i* framework, and the organizational-inspired
architectural styles. Section 3 emphasizes the existence of conceptual differences
between requirements and architecture. Section 4 introduces our approach to integrate

organizational requirements and socio-intentional styles. Section 5 summarizes the
related work. Finally, section 6 concludes the paper with final considerations,
contributions and points further research.

2. The Tropos Methodology

An information system plays a critical role in the management of an enterprise. The
need for modeling the enterprise and organizational environment is well recognized in
requirement engineering [1][2]. However, when developing system that truly fulfil the
real needs of an organization it is required to have a deeper knowledge of intentional
and strategic aspects of the system. Many requirements models cannot cope with the
questioning of the reasons (or why) and end up dealing only with the functions of the
system. Goals from the organizational model can be used as a starting point when
constructing the architectural description. Goals related to functional abilities provide
the basis for system requirements, while goals related to business and system qualities
provide the basis for non-functional requirements.

The Tropos methodology adopts the view of information systems as social structure
[3]. By social structures, we mean a collection of social actors, human or software,
which act as agents, positions, or roles and have social dependencies among them. The
Tropos adopts concepts offered by the i* organizational modeling framework [2] [4],
such as actor, agent, position, role, and social dependency. More details about Tropos
Methodology can be found in [3].

2.1 Requirements in i* framework

The i* framework focuses on the modeling of strategic actor relationships of a richer
conceptual model of business processes in their organizational settings. The i* caters
for some of these advanced concepts. It can be used for: (i) obtaining a better
understanding of the organizational relationships among the various system actors; (ii)
understanding the rationale of the decisions taken; and (iii) illustrating the various
characteristics found in the early phases of requirements specification.

Fig. 1. Elements from i* framework

The participants of the organizational setting are actors with intentional properties,
such as, goals, beliefs, abilities and compromises. These actors depend upon each
other in order to fulfill their objectives and have their tasks performed. A dependency
describes an “agreement” (called dependum) between two actors playing the roles of
depender and dependee, respectively. The depender is the depending actor, and the
dependee, the actor who is depended upon. Dependencies have the form
depender→dependum→dependee.

The i* technique consists of two models: The Strategic Dependency Model (SD)
and the Strategic Rationale Model (SR).
The Strategic Dependency Model (SD) includes a set of nodes and links connecting
them, where nodes represent actors and each link indicates a dependency between two
actors. There are four types of dependencies, three of them related to existing
intentions – goal dependency, resource dependency and task dependency – while the
fourth is associated with the notion of non-functional requirements, the so called soft-
goal dependency.

Fig. 2. The SR model of the e-commerce example. The Media Shop is a store
selling and shipping different kinds of media items such as books, newspapers, audio
CDs.

The second model of the technique i* is the Strategic Rationale Model (SR model).

It is used to: (i) describe the interests, concerns and motivations of participants
process; (ii) enable the assessment of the possible alternatives in the definition of the
process; and (iii) research in more detail the existing reasons behind the dependencies
between the various actors. This model includes the previous four types of nodes
(present in the SD model): goal, task, resource and soft-goal. There are two new types
of relationship, means-end that suggests that there may be other means of achieving
the objective (alternatives) and task-decomposition that describes what should be done
in order to perform a certain task

In Fig. 2. the Media Shop has decided to open up a B2C retail sales front on the
Internet. The system has been named Medi@ and is available on the world-wide-web
using communication facilities provided by Telecom Cpy. It also uses financial
services supplied by Bank Cpy, which specializes on on-line transactions. The figure
postulates a root task Internet Shop Managed providing sufficient support to the
softgoal Increase Market Share. That task is firstly refined into goals Internet Order
Handled and Item Searching Handled, softgoals Attract New Customer, Secure and
Usable and tasks Produce Statistics and Maintenance. Internet Order Handled is
achieved through the task Shopping Cart, which is decomposed into subtasks: Select
Item, Add Item, Check Out, and Get Identification Detail. More details can be
founded in [3].

In next sub-section we will detail the organizational-inspired architectural styles
Tropos.

2.2. Socio-Intentional Architectural Styles

System architecture constitutes a relatively small, intellectually manageable model of
system structure, which describes how system components work together. Tropos has
defined organizational architectural styles [5] [6] to guide the design of the system
architecture. These architectural styles (pyramid, joint venture, structure in 5,
takeover, arm’s length, vertical integration, co-optation, bidding) are based on
concepts and design alternatives coming from research on organization management
[18].

Due to lack of space in this paper we only detail the joint venture style which is a
decentralized style based on an agreement between two or more principal partners
who benefit from operating at a larger scale and reuse the experience and knowledge
of their partners. Each principal partner is autonomous on a local dimension and
interacts directly with other principal partners to exchange services, data and
knowledge. However, the strategic operation and coordination of the joint venture is
delegated to a Joint Management actor, who coordinates tasks and manages the
sharing of knowledge and resources. Outside the joint venture, secondary partners
supply services or support tasks for the organization core, as seen in Fig.3.

Fig. 3. The joint venture pattern

However, the interconnection of requirements and intentional software architecture
is not straightforward. Some problems are presented in next section.

3. The Gap between Requirements and Architectural Description

The requirements are related to concepts such as goals, conflicts, options and
agreements. Moreover, systems characteristics and properties (functional and non-
functional) are also described in terms of requirements. Indeed, requirements can be
simple or complex, necessary or ambiguous, declared concisely or elaborated
carefully. On the other hand, the terminology and concepts used for architectural
description are quite different from those used for the requirements specification.
Architecture includes components, which are the computational element and data
elements in a software system. The interactions among components are captured
through explicit software connectors.

The architecture models a solution for the problem described in the requirements
and provides high-level abstractions for representation of the structure, behavior and
main properties of a software system. In addition to specifying the structure and
topology of the system, the architecture should show the intended correspondence
between the system requirements and elements of the constructed system. It can
additionally address system-level properties such as capacity, throughput, consistency,
and component compatibility [12].

The inter-dependencies and constraints between requirement elements and
architectural elements are thus not well understood and consequently only little
guidance is available in bridging the gap among requirements and architecture. The

existence of conceptual differences between what to do (requirements) versus how to
do it (architecture, design and code) constitutes a semantic gap.

The following section outlines the basis of our approach that tries to fill this gap.

4. Systematic Integration between Requirements and Architecture
(SIRA)

In this research work, we propose a framework to identify and map key architectural
elements and the dependencies among those elements, based on the stated system
requirements. In our approach, the requirement specification should include not only
software specifications but also other kinds of information describing the context and
the environment in which the intended system will function.

In this section we present the theoretical foundations and describe some initials
guidelines to support the systematic integration of the requirements modeling and
architectural design phases of Tropos. Sub-section 4.1 presents the Systematic
Integration between Requirements and Architecture Descriptions (SIRA) framework.
Sub-section 4.2 outlines the set of complementary information proposed in the SIRA
component named SIRA-Elements. Section 4.3 summarizes the activities of the
SIRA-Process to map architectural information.

4.1 SIRA Framework

The Systematic Integration between Requirements and Architecture (SIRA)
framework provides a set of complementary elements to enhance the requirements
analysis of the i* Strategic Dependency - SD and Strategic Rationale – SR models and
supplements the information needed to derive a high-level architectural description.
This approach has a systematic process to support the identification and the mapping
of architectural decision from a given requirements specification. The SIRA
Framework in Tropos context is showed in Fig. 4.

Fig. 4. SIRA Framework in Tropos context

Early

requirements
Detailed

design

i*i*TROPOSTROPOS SIRA Framework

Requirements
model

Architectural

design

Architectural
model

Process

Late

requirements
Elements

Early

requirements
Detailed

design

i*i*TROPOSTROPOS SIRA Framework

Requirements
model

Architectural

design

Architectural
model

Process

Late

requirements
Elements

The SIRA Framework is composed of SIRA Elements and SIRA Process: SIRA
Elements includes the definitions of schemas, templates and guidelines. These
element models are used to increase the i* requirements models with complementary
information; and SIRA Process provides a systematic support to capture and to
analyze the SIRA Elements using as input the i* requirements models and
architectural catalogue (socio-intentional styles). It generates the System Group
schema and the i* architectural model, as output.

Fig. 5. The SIRA Framework.

As showed in Fig.5. the SIRA Elements are represented by Schemas, Templates and
Guidelines:

• Schemas – Each schema represents, in i* notation, the relationships between
requirements elements and provide a systematic decomposition of system
actors and sub system components. The SIRA Elements are System Groups,
Constraints, Architectural Elements. The output set is named System Group
Schema;

• Templates – Each template are used to capture and to refine the
complementary properties from SIRA elements represented in each schema.
In this proposal we are presenting two templates examples: System Group
template (Table 4.) and System Role template (Table 3.);

• Guidelines – A set of guidelines are defined to support the mapping from
strategic rationale model into SIRA-Elements (Groups and sub-groups) and
the mapping from SIRA-Elements to architectural elements, in the selected
architecture style. Some initial guidelines will be presented in the SIRA-
Process.

As showed in Fig. 6. the SIRA Process has three activities: The first activity

(Analyzing Elements) takes as input the i* requirements models (together with the
Architectural catalogue) to generate the SIRA Element named System Group Schema.
In the second activity (Applying NFR), the Non-Functional Requirements framework
(NFR) is used to select architectural styles, based on non-functional requirements
extracted from i* models. In the third activity (Relating Elements), the System Group
Schema are related to the architecture elements and used to generate the i*
architectural models.

SIRA Process

i* Requirements
model

i* SystemGroup
schema

i* architectural
model

SIRA Elements

Schemas Templates Guidelines

Architectural
catalogue

SIRA Process

i* Requirements
model

i* SystemGroup
schema

i* architectural
model

SIRA Elements

Schemas Templates Guidelines

Architectural
catalogue

Fig. 6. The SIRA Process Activities The SIRA Process focuses on a systematic way to support
the transition from requirements specification to architecture model.

4.2 The SIRA Elements

The organizational view extracted from Strategic Dependency and Strategic Rationale
models is used to capture system related goals. In i*, an actor is an active entity that
depends on other actors for goals to be fulfilled, softgoals to be achieved, tasks to be
performed, and resources to be furnished. The initial set of SIRA Schemas identified
to complement the i* requirement models include definitions of:

1. System Group - The software elements of the architecture. A System Group
can be a component or sub-components of a software system. In our case
study necessary to support the selling of media items in Internet, like
Medi@ actor in (Fig.2). Each System Group can be refined into Sub Group
to cover some service in a particular context:
• System Roles – Each Sub Group assume a specific behavior to execute a

service in the context;
• Responsibility – Services and capabilities assigned to sub groups.

Responsibilities are extracted from the set of tasks to be performed and
goals to be fulfilled by system actors, like “Place order” or “Buy media
items”.

2. Constraints – Assertions and constraints that apply to the entire system or
components. A constraint can be a softgoal, like security or availability;

3. Architectural Elements - Elements to represent an architectural model in i*.
They are System Actors (Components) and interactions between
components.

4.2.1 The System Group
The Role Theory can also be of some use as it is widely applied for enterprise
modeling, postulating that individuals occupy positions in an organization [15, 16,
17]. Associated with each position is a set of activities including required interactions
that constitute the responsibilities of that position. The organizational model offers a
set of abstraction that can influence the division of labor and the coordination
mechanisms, and consequently the system responsibilities and task assignments. The
organizational structure can defines the roles of various components (actor), their

Analysing
Elements

Applying
NFR

Relating
Elements

i* Requirements models ,
Architectural catalogue,

and
SIRA Elements definition

System Group Schema
and

i* Architectural model Architectural
model

Analyzing
Elements

Applying
NFR

Relating
Elements

i* Requirements models ,
Architectural catalogue,

and
SIRA Elements definition

System Group Schema
and

i* Architectural model Architectural
model

responsibilities, defined in terms of tasks and goals they have assigned and resources
they have been allocated.

 In this work we propose that the software system can be seen as an organizational
structure, in which actors are members of a system structure in order to perform
specific tasks. Software System is a concept that correspond a group in role theory. A
software system (System Group) consists of an actor (or set of actors) that plays one or
more role (System Role).

The SIRA framework uses the i* notation to model the relationship between group,
system and roles. In i*, the term actor refers generically to any unit (agent, role or
position) to which intentional dependencies can be ascribed. An agent can be seen as
an actor with concrete and physical manifestations (person or system). A role is an
abstract characterization of the behavior of a social actor within some specialized
context. A position is a set of roles typically played by one agent. Fig. 7. presents i*
notation of agent, role and position.

Fig. 7. – i* notation to Role, Positions and Agents

The System Group schema is a generic structure defined at a metalevel that can be
instantiated to model a specific application domain. An example using a generic
system of the e-commerce domain is illustrated in the Fig. 8. An identified system
actor is represented as a System Group position (SystemGroup). A System Group can
be refined into Sub-Groups (SubSystem1…3). A sub-group in a particular position
may cover System Roles such manager, provider or customer.

Fig. 8. An e-commerce System Group schema

To identify each System Role we are using the categorization based on functions
(tasks that an user can carry out) and context (target that an user may carry out the
tasks) to establish the key role characteristics of the organizational domain [18]. Each
domain has a System Group (actor) that assumes the functionality required by the
organization. Each set of functionality identifies one or more role in the organizational
system context. An initial System Role categorization is identified from an e-
commerce system context, as described in Table 1. .

Table 1. - System Role Categorization

Customer/Client Role to handle goals or tasks to receive a service or product.
Provider Role to handle goals or tasks to perform a service or deliver a

product.
Manager Role to handle goals or tasks to monitor and control a service

or product.

Each role is defined with a set of goals to be fulfilled, i.e., a role is an abstract

representation of the responsibilities of a specific actor. In order to identify the roles,
we propose an initial classification of the responsibilities (tasks and goals) based on
the idea of context-based skill aggregation, as showed in Table 2. Some of then can be
refined to provide more specific skill, like basic order input or basic order process.

Table 2. Responsibilities

Basic To aggregate functions of input, processing and output services
Manager To aggregate functions of coordination and managing services
Support To aggregate functions outside the basic flow of operational tasks.

4.3 The Integration Process

In this section we outline the activities of the SIRA Process, which focuses on a
systematic way to support the transition from requirements specification to
architectural model.

4.3.1 Analyzing Elements
This activity covers a requirements analysis using as input the i* requirements model.
It consists of guidelines to identify the SIRA-Elements and capture architectural
relevant information about these elements. As output we have the role schemas and
templates to complement the information of requirement elements. This activity
includes three initial sub-activities:

Identify Correlation among the i* Strategic Rationale Model and SIRA-Elements
– The possible architectural elements are identified from i* Strategic Dependency and
Strategic Rationale models;

Identify the System Responsibilities – The organizational context is used to identify
the functionality that the system component should provide. Usually this functionality
is identified from the main goal dependencies and its task decomposition. Hence, the
system responsibilities should be classified according to the Table 2.

Identify System Roles – The system functionality should be aggregated and
categorized into System Roles according to the Table 1. Table 1. Each set of
responsibilities can be related to each organizational role of a specific domain (like e-
commerce domain). The i* system actor can be refined into system component to
address each System Role.

Some guidelines and templates are provided to support these activities. The Medi@

actor is used as example, as seen in Fig.2.
Guideline 1: (i*) actor can be identified as a System Actor (software) to be

analyzed. The Medi@ system is an e-commerce information software system that
supports the business in question, i.e, the commerce of media items in the Internet
platform. The first system component identified could be the Medi@ actor.

Guideline 2: (i*) goal dependency can be identified as main goal dependency. The
main goal of Medi@ actor is to provide service for others two actor, identified as
Media Shop and Customer. The main dependencies are identified and the main goals
to be fulfilled are “Process Internet Orders” and “Buy Media Items”.

Guideline 3: (i*) goals and tasks assignment can be identified. For instance, the
task (responsibility) assignment that fulfills the two main goals are: The goal
identified as “Process Internet Orders” can be associated to the task Internet Shop
Managed. The goal identified as “Buy Media Items” can have the following tasks:
Shopping Cart, Place Order and Browse Catalogue (see Fig.2.).

Guideline 4: The i* tasks can be identified by responsibility type (see Table 2)
• The basic responsibilities include tasks to fulfill the main organizational

goals. These tasks include inputs for production and transformation into
outputs. An example is the task “Shopping Cart”;

• The support responsibilities include tasks that fulfill organizational goals
such as “Security”. These tasks include process standardization. An example
is “Secure Form Order”;

• The manager responsibilities include tasks that fulfill the organizational
goals such as “Increase Market Share”. These tasks should monitor and
analyze the goals fulfillment. An example is “Internet Shop Managed”.

Guideline 5: (i*) System actor can be identified as a System Group position.
Guideline 6: (i*) System Group position can be refined into Sub-Group. The

system role categorization is used to identify each sub system that plays the role. In
our case study, a possible assignment of roles and responsibilities for an e-commerce
software system can be identified following the system role schema for e-commerce
domain (as seen in Fig.8).:

Guideline 7: (i*) Sub-Group position can cover one (or more) System Role.
1. The Sub-Group SubSystem1 covers Customer Interface Role to handler user

interface services. These include basic input and output responsibilities, like
“Shopping Cart”;

2. The Sub-Group SubSystem2 covers Provider Order Role, to handler order
processing services. These include basic processing responsibilities, like
“Orders Handler”;

3. The Sub-Group SubSystem3 covers Manager Order Role with control system
functions. These include managing and controlling responsibilities, like
“Internet Shop Managed”.

Table 3. System Role template for Media@. It shows the partial template definition of a
System Role named Customer Interface Role, categorized as Customer, that has basic
input/output responsibilities to handler user interface services to fulfill an goal identified as
Buy Media Item.

Type: System Role
Name: Customer Interface
Category: Customer
Description: Handler user interface services to input and output
 customer order data.
Responsibility Type: basic input/output
Goal: Buy Media Item

Table 4. Main component templates for Media – The table shows the partial template
definition of a main component with complementary architectural definitions. The Name
attribute is the i* specification from which the element (actor) was derived. In our example
“Medi@” actor is a system component. The System Roles attribute is an initial list of
responsibility assignment (tasks and goals). Composed of attribute identifies the sub-
components that implement the component.

Type: System Group
Name: Medi@
System Roles: Customer Interface; Provider Order and Manager Order
Architectural Pattern: {will be defined in phase 2}
Composed of: {sub components – will be defined in phase 3} ...

The Architectural Pattern attribute identifies the architectural style and will be

defined in the next sub-section.

4.3.2 Applying NFR Framework
An important task during architectural design is to select among alternative
architectural styles using as criteria the desired qualities (NFR) identified in the
previous phase (Late Requirements). They will guide the selection process of the
appropriate architectural style.

As an example, we compare four architectures styles, including some conventional
(Pipes & Filter, Layers) [12] and organizational (Structure in 5, Joint Venture) ones.
Table 5. summarizes strengths and weaknesses of the four architecture styles with
respect to the software quality attributes of Medi@ application. The layered
architecture gives precise indications as to the components expected in a business to

consumer system. The pipes-and-filters pattern concentrates on the dynamics of
input/output data streams. The organizational patterns (Structure-in-5 and Joint
Venture) focus on how to organize components expected in an e-business system but
also on the intentional and social dependencies governing these components. An
exhaustive evaluation is difficult to be established at that point. But, considering
preliminary results from Table 5. , we can argue that the organizational architectural
style (Joint-Venture or Structure in 5) better fit systems and applications that need
open and cooperative components like the e-commerce example.

Table 5. strengths and weaknesses of four architectures

The evaluation results in contribution relationships from the social structures to the

quality attributes, labeled “+”, “++”, “-”, “--” that mean respectively partially
satisfied, satisfied, partially denied and denied.. The analysis involves refining these
qualities, represented as softgoals, to sub-goals that are more specific and more
precise and then evaluating alternative architectural styles against them, After this
non-functional analysis, the Joint Venture style of the Tropos socio-intentional
catalogue is selected as the best architecture candidate to be applied in Medi@
example. The joint venture style was introduced in sub-section 2.2 (see Fig.3).

More details about the selection and non-functional requirement decomposition
process can be found in [11].

4.3.3 Relating Elements
This activity consist of applying the i* architectural extension (templates and
guidelines) to support the relationship between the i* requirements elements and
architectural elements. This relationship can be identified by functionality and related
to the SubSystem roles in Analyzing Elements activity.

Guideline 9: The identified System Sub-Groups can be mapped to a system
components in the selected style.

In SIRA framework, the System Group schema can be used to define the
responsibilities and behavior (System Role) of possible architectural components. It
also can relate each SubSystem (Sub-Group) of the application domain to the
functionality of each architectural component. For instance, the Medi@ actor is a
System Group of an e-commerce domain. The Medi@ System Group decomposition
into SubGroup has some identified role (System Role). Each role suggests a possible

assignment of responsibilities for each architectural components of the joint venture
style:

• The Customer Interface role with input responsibilities can be related to
Store Front to supply a customer with a usable front-end web application for
supplying a web shopping cart and item browse.

• Provider Order role with order-processing responsibilities can be related to
Order Processor to provide the processing for a given order initialized in
Store Front.

• Manager Order role with managing responsibilities can be related to Joint
Manager to manage controlling security, availability and adaptability.

• The component Back Store assumes support responsibilities to produce
statistical analyses and historical charts.

Hence, a possible refinement of the Medi@ system architecture model is shown in

Fig.10. Each component system is generated from a System Group, as seen in
previous activity phase (Relating Elements). The Medi@ system model is generated
with three components that assumes the principal partners positions (Store Front,
Billing Processor and Back Store), and component to coordinates tasks (Joint
Management). Each component is represented as i* actor.

Fig. 9. Medi@ system architecture model

 5. Related Works

The software systems of today are characterized by increasing size, complexity,
distribution, heterogeneity, and lifespan. These systems demand special cares in the
requirements modeling and in the architectural model in the early phases of the
analysis. This relationship between requirements and architectures has been received a
growing attention more recently [13][14]. A number of goal-based requirements
approaches, most notably KAOS [8] [9] and the NFR framework [11], have proposed
the explicit use of the notion of ‘goals’ to structure system requirements and
architecture. The CBSP approach [7] [10] explores the relationships between software
requirements and architectures, and proposes a technique to reconciling mismatches
between requirements terminology and concepts with those of architectures. But these
approaches do not establish an explicit relation between elements of the problem
domain and architectural components in solution domain.

6. Final Considerations

In spite of the significant progress accomplished in the areas of requirement
specification and architectural description, we still need frameworks, techniques and
tools for the systematic support in the systematic achievements of the architectural
objectives in the complex context of the stakeholders’ needs. Our research focuses on
finding a systematic process to support the transition from requirements specification
to architectural description. In doing so we hope to achieve means to show that a
given software architecture satisfies a group of functional and non-functional
requirements.

The main contribution of our integration approach is to assure that the architecture
components represent or are associated to the main organizational requirements (goals
and tasks) which in turn will be fulfilled by a software system. Additionally, this
approach also makes it possible to improve the requirement traceability along the
whole software development process. It emphasizes the organizational environment
(actors, goals and tasks) and hopefully helps to reduce the gap among requirement
specification and architectural models.

Further work is still required to evolve this proposal. In particular, we need to
improve the complementary information (schemas, templates and guidelines) to
augment the requirement specification and to derive architectural Information.

References

[1] Yu, E.: “Modeling Strategic Relationships for Process Reengineering”. Ph.D. thesis,
Department of Computer Science, University of Toronto, Canada (1995).

2 Yu, E., and Mylopoulos, J.: “Modeling Organizational Issues for Enterprise Integration”.
ICEIMT’97 - International Conference on Enterprise Integration and Modeling Technology.
Turin, Italy. October 1997.

3 Castro, J., Kolp, M., Mylopoulos, J.: “Towards Requirements Driven Information Systems
Engineering: The Tropos Project”. In Information Systems, Vol. 27. Elsevier, Amsterdam,
The Netherlands (2002) 365–389.

4 Yu, E.: ‘Agent Orientation as a Modelling Paradigm”. Wirtschaftsinformatik. 43(2) April
2001. pp. 123-132.

5 Kolp, M., Castro, J., Mylopoulos, J.: “A social organization perspective on software
architectures”. In Proc. of the 1st Int. Workshop From Software Requirements to
Architectures. STRAW’01, Toronto, Canada (2001) 5–12.

6 M. Kolp, P. Giorgini and J. Mylopoulos. “Organizational Patterns for Early Requirements
Analysis”. 15th International Conference on Advanced Information Systems Engineering
(CAiSE'03), Velden, Austria. To appear, June 2003.

7 Grünbacher, P., Egyed, A. and Medvidovic, N.: “Reconciling Software Requirements and
Architecture: The CBSP Approach”. Proceedings RE’01, 5th International Symposium on
Requirements Engineering. Toronto, Canada. August 2001.

8 Lamsweerde, A. van.: “Requirements Engineering in the Year 00: A Research Perspective”.
22nd Proceedings of International Conference on Software Engineering, Limerick, Ireland.
Jun. 2000.

9 Lamsweerde, A. van.: “Goal-Oriented Requirements Engineering: A Guided Tour”.
Proceedings RE’01, 5th International Symposium on Requirements Engineering. Toronto,
Canadá. August 2001, 249-263.

10 Nuseibeh, B.: “Weaving the Software Development Process between Requirements and
Architectures”. First International Workshop From Software Requirements to Architectures
(STRAW'01). May, 2001.

11 Chung, L., Nixon, B. A., Yu, E. and Mylopoulos, J.: “Non-Functional Requirements in
Software Engineering”. Kluwer Publishing, 2000.

12 Shaw, M.: “Abstraction for Software Architecture and Tools to Support Them”. IEEE
Transactions on Software Engineering, 21(4): pp.314-335, April 1995.

13 STRAW’01. Proceedings of First International Workshop From Software Requirements to
Architectures (STRAW’01), 2001. http://www.cin.ufpe.br/~straw01.

[14] STRAW’03. Second International Workshop From Software Requirements to
Architectures (STRAW'03). May 9,2003. Portland, Oregon, USA.
http://se.uwaterloo.ca/~straw03/.

15 Biddle B. J. and Thomas, E. J.: “Role Theory: Concepts and Research”. New York: Robert
E. Krieger Publishing Company, 1979.

16 Crook, R., Ince, D. and Nuseibeh, B.: “Towards an Analytical Role Modeling Framework
for Security Requirements”. In proceedings of Eighth International Workshop on
Requirements Engineering: Foundation for Software Quality REFSQ'02. September 2002.
Essen, Germany.

17 Fox, M., Barbuceanu, M., Gruninger, M. and Lin, J.: “An Organization Ontology for
Enterprise Modelling”. Simulating Organizations: Computational Models of Institutions and
Groups, M. Pritula, K. Carley & L. Gasser (Eds), Menlo Park CA: AAAI/MIT Press, pp.
131-152. 1996.

 18 Mintzberg, H.: “Structure in Fives: Designing effective organizations”. Prentice Hall, 1992.

