

New Mechanisms for the Integration of Organizational
Requirements and Object Oriented Modeling

Fernanda M. R. Alencar1, Flávio Pedroza1, Jaelson F. B. Castro2 and Ricardo C.
O. Amorim2

1 Universidade Federal de Pernambuco, Departamento de Eletrônica e Sis temas,
Recife, Brazil
fmra@ufpe.br

flavio.pedroza@caeser.org.br
2 Universidade Federal de Pernambuco, Centro de Informatica,

Recife, Brazil
{jbc,rcoa}@cin.ufpe.br

Abstract. The success of computer applications depends on a good
understanding of the organizational environment. Thus, requirement-modeling
techniques may be used to help to understand a process in terms of goals,
business rules, tasks, resources and the relationship between their actors. We
have observed a growing influence of the object-orientation paradigm but the
dominant technique of object oriented modeling UML (Unified Modeling
Language) is still ill equipped to represent the organizational requirements. So,
we have advocated the use of the i* technique to model requirements in terms
of the relationships among the several organizational actors, as well as a means
for understanding the rationale for the decision-making. In this paper we
discuss some improved guidelines for the integration of early and late
requirements specifications. We ext end the i * technique so that we establish an
order in the execution of the i* task dependency. We are also proposing to
extend the prototype tool (GOOD - Goal Object Oriented Development) to
support the new guidelines.

Keywords: Requirements Engineering, The Integration of Early and Late
Requirements, Object Oriented Development, Tool Support.

1. Introduction

Requirements capture has been acknowledged as a critical phase of software
development. It deals not only with technical knowledge but also with organizational,
managerial, economic and social issues. The emerging consensus is that a requirement
specification should include not only software specification but also business models
and other kinds of information describing the context in which the intended system
will function [1]. Usually the customers do not exactly know what they want and
sometimes the requirements may not reflect the real needs of the customers. At the
early phase [5] requirements activities are typically informal and address

organizational or non-functional requirements. At the late phase requirements
activities usually focus on completeness, consistency, and automated verification of
requirements.

The Unified Modeling Language [2] is well suited for late-phase requirements
capture. It facilitates the production of a requirement document, to be passed on to
developers, so that the resulting system would be adequately specified and
constrained in a contractual setting. However, UML is ill equipped for early
requirements capture because it can not represent how the intended system meets
organizational goals, why the system is needed, what alternatives were considered,
what the implications of the alternatives are for the various stakeholders, and how the
stakeholders’ interests and concerns might be addressed. What is required to capture
such concerns is a framework that focuses on the description and evaluation of
alternatives and their relationship to the organizational objectives behind the software
development project [3]. We argue that the i* framework [5], is well suited for early-
phase requirements capture, since it provides for the representation of alternatives,
and offers primitive modeling concepts such as those of softgoal and goal.

Hence, our contention is that UML alone is not adequate to deal with all different
types of analysis. Instead, we advocate the use of two complementary modeling
techniques, i* and UML. Thus, we want to keep the consistency between the desired
software system and the organization objectives, as well to establish the impact that
any change of objectives will be able to cause in the system and vice versa.

The goal of this paper is to improve the mapping rules presented in [13], to cope
with structuring mechanisms supported by the i* technique, namely agents, roles and
positions. Therefore, we propose new rules to treat these sub-units and their
relationships. Hence, we present the transition from informal descriptions of actors
and theirs sub-units in i* to precise requirements in UML.

2 The i* Modeling Framework

The i* technique [5] provides understanding of the organizational environment and
goals. The i* offers a modeling framework that focuses on strategic actor
relationships. The term actor was used to refer generically to any unit to which
intentional dependencies could be ascribed. An intentional actor does not simply carry
out activities and produce entities, but has motivations, intents, and rationales behind
its actions [5]. An actor is strategic when it is not merely focused on meeting its
immediate goal, but is concerned about longer-term implications of its structural
relationships with other actors. Usually, when we try to understand an organization,
the information captured by standard modeling techniques (DFD, ER, Statechart, etc.)
are not capable of expressing the reasons (the “why’s”) of the process (motivations,
intentions and rationales). The ontology of i* [5] caters to some of these more
advanced concepts. The participants of the organizational setting are actors with
intentional properties, such as, goals, beliefs, abilities and compromises. These actors
depend upon each other in order to fulfill their objectives and have their tasks

performed. The i* technique [5] offers two models: The Strategic Dependency (SD)
model, and the Strategic Rationale (SR) model.

2.1 The Strategic Dependency (SD) Model

This model focuses on the intentional relationships among organizational actors. It
consists of a set of nodes and links connecting them, where nodes represent actors and
each link indicates a dependency between two actors. The depending actor is called
depender, and the actor who is depended upon is called the dependee. Hence, an SD
model consists of a network of dependency relationships among various actors,
capturing the motivation and the rationale of activities. i* distinguishes four types of
dependencies, three related to existing intentions: goal dependency (ex.: Browse
Catalogue in figure 1); resource dependency (ex.: Personal Data in figure 1); task
dependency (ex.: Update Stock in figure 1).

The fourth is associated with the notion of non-functional requirements, the so-
called softgoal dependency (ex.: Security [Access] in figure 1). In i* we can also
model different degrees of dependency commitment on the part of the relevant actors
(open, committed, or critical). To model the sub-units of a complex actor, we can also
classify actors into three types of sub-units - agents, roles, and positions – each of
which is an actor in more specialized sense.

• An agent is an actor with concrete physical manifestations (a person or a
system). Ex.: Store Manager in figure 2.

• A role is an abstract characterization of the behavior of an actor within some
specialized context, domain or endeavor. Ex.: CD Reservation in figure 2.

• A position is intermediate in abstraction between a role and an agent. It is a set
of roles typically played by one agent. We can say that an agent occupies a
position and that a position covers a role. Ex.: Store Management in figure 1.

 Suppose a situation in which a Client wishes to buy CDs and goes to a specialized
store. If a client cannot find his/hers preferred tit le, the shop can happily place an
order for it and notify the client upon its arrival. The shop has decided to improve its
services by commissioning a new software system (SmartCD) to handle orders as
well as providing an online catalogue.

 In figure 1, we have the initial Strategic Dependency (SD) model of the CD store
case study.

At this early phase of requirements capture we have identified three positions:
Client, Store Management and SmartCD. This last actor corresponds to the software
system to be developed, handling orders, notifications of CD arrivals and providing
the online catalogue. The dependencies between the Client and the Store Management
position (actor) can be found in Figure 1.

In Figure 2, we concentrate our specification on the SmartCD position. This is the
information system that will be developed in the future. As we can see, we use the
five types of relationships – occupies, covers, play, is -part-of and is -a. The first is
respectively between an agent (SystemControl) and a position (SmartCD). The second
one is among a position (InternetSales) and a set of roles (CD_Reservation and
CD_Delivery). The third is between an agent (Office_Boy) and a role (CD_Delivery).
Roles, positions, and agents can each have subparts. It is expressed by the fourth

relationship “IS-PART-OF” construct. Thus, the SmartCD position consists of
InternetSales, Inventory, and Financial. The fifth relationship , IS-A construct
represents a conceptual generalization/specialization among agents, positions or roles.
This construct is not used in Figure 2.

Fig.1. The Strategic Dependency Model

2.2 The Strategic Rational (SR) Model

The SR Model provides a more detailed level of modeling by looking “inside”
actors to model internal intentional relationships. It is used to: (i) describe the
interests, concerns and motivations of participants process; (ii) enable the assessment
of the possible alternatives in the definition of the process; and (iii) research in more
detail the existing reasons behind the dependencies between the various actors. Two
new types of relationship are incorporated: means-end that suggests that there could
be other means of achieving the objective (alternatives) and task-decomposition that
describes what should be done in order to perform a certain task. Unfortunately the
current Strategic Rationale (SR) model does not capture the order in which the tasks
can be decomposed. In order to be capable of capturing the occurrence order of the
sub-tasks, we propose the insertion of numeric labels to capture the sequence of
occurrence. When the order is not relevant, the elements will be contained in a box of
stippled borders. In Figure 3 we use the enhanced Strategic Rationale (SR) notation to

detail the InternetSales position, where we will emphasize the order of decomposition
of the sub-task.

Fig. 2. SmartCD SD Model

The store is interested in attracting (new and old) clients. In the InternetSales

module several strategic decisions were taken in consideration and as a result the task
Interact by Site was decomposed into three sub-tasks (expressed by a task-
decomposition link) (Figure 3).

At this point, we may stop the process of modeling the strategic dependencies of
the CD store. We are already capable of understanding some issues of the application
domain (the enterprise). We can then move to provide a detailed system specification.

3. Mapping Early Requirements into Late Requirements

To specify the late requirements, we adopt pUML (precise UML) [6], which
provides a precise denotational semantics for core UML elements (relationship,
classifier, association, and generalization).

The pUML diagrams alone are not sufficient for late requirement capture because
it does not provide for the specification of constraints, such as invariants,
preconditions and the like. For this task, we have adopted the Object Constraint

Language (OCL) [4]. OCL is a textual language, also part of the Object Management
standard, that can precisely describe constraints for object oriented models.

Fig. 3. SR Model of the SmartCD

Original Mapping Guidelines Extended Mapping Guidelines

Number i* pUML Number i* pUML

G1 Actor Class G’1. 1 Agents, roles or
position.

Class.

 Class G’1. 2 Relationship IS-
PART-OF
between
positions, agents
or roles.

Class aggregation.

 Class G’1. 3 Relationship IS-
A between
positions, agents
or roles.

Class
generalization/specialization.

 Class G’1. 4 Relationship
OCCUPIES
between an agent
and a position.

Class association named
OCCUPIES.

 Class G’1. 5 Relationship
COVERS
between a
position and a
role.

Class association named
COVERS.

 Class G’1. 6 Relationship
PLAYS between
an agent and a
role.

Class association named
PLAYS.

G2 Task Method G2.1 Tasks defined in
SD model.

Methods with public
visibility.

 Method G2.2 Tasks defined in
SR model.

Methods with private
visibility.

G3 Resources Class G’3. 1 Resources
defined in SD
model.

Class if this dependence has
the characteristics of an
object.

 Attribute G’3. 1 Resources
defined in SD
model.

Attribute with private
visibility in class that
represents the dependee actor
if this dependence cannot be
characterized as an object

 Attribute G’3. 2 Resources (sub
resources)
defined in SR
model.

Attribute with private
visibility in the class that
represents the actor in which
the sub resource belongs (if
this sub resource cannot be
understood as an object).

 Class G’3. 2 Resources (sub
resources)
defined in SR
model.

An independent class,
otherwise.

G4 (Soft)Goal Attribute
Boolean

G4.1 (Soft)Goals in
SD model.

Attribute with public
visibility in the class that
represents the dependee.

 Attribute
Boolean

G4.2 (Soft)Goals in SR
model.

Attribute with visibility
public in the class that
represents the actor in wich
the sub goal belongs.

G5 Relationship
Task
Decomposition

OCL G5 Task
Decomposition.

Represented by pre and
posconditions
(expressed in OCL) of the
corresponding
pUML operation.

G6 Relationship
Means-End

OCL
disjunctions
of all
possible
means
achieving
the end.

G6.1 (Soft)Goals-
(Soft)Goals.

the disjunction of the means
values implies the end value.

 OCL G6.2 (Soft)Goal –
Task, Resource-
Task.

The post -condition of the
means
task implies the value of end.

 OCL G6.3 Task – Task. The disjunction of the post -
condition of the means imply
the pos-conditions of the end.

Table 1 – Original Mapping Guidelines [13] x Extended Mapping Guidelines

In this paper we extend the previous guidelines [13] to cater for advanced
structuring mechanisms. The previous guidelines and the proposed extensions are
presented in the table 1. In particular we will extend guideline G1 (related to the
mapping of i* actors to pUML classes) and the guideline G3 (related to the mapping
of the i* resources to pUML classes). The new guidelines are being denoted by G’
symbol. From the i* models (Figure 1, 2 and 3) and with the enhanced guidelines we
are able to construct the class diagram shown in Figure 4.

Guideline G’1.1: The i* actors (agents, roles or positions) can be mapped to
pUML classes. OCL constraints can be attached to the actor-generated classes.

Ex: There were eight actors in our case study (see Figure 3): SmartCD, Financial,
Internet Sales and Inventory (positions), System Control and Office Boy (agents), and
CD Reservation and CD Delivery (roles). These can be mapped to the classes shown
in Figure 4.

Guideline G’1.2: The i* relationship IS-PART-OF between actors can be mapped
to a class aggregation in pUML.

Ex: The position SmartCD is composed by the positions Internet Sales, Inventory,
and Financial (see Figure 3). In pUML (see Figure 4), SmartCD class is the aggregate
of three corresponding composite classes.

Guideline G’1.3: The i* relationship IS-A between actors can be mapped to class
generalization/specialization in pUML.

 Ex: In our case study we do not have this type of relationship.
Guideline G’1.4: The i* relationship OCCUPIES between an agent and a position

can be mapped to a class association in pUML named OCCUPIES.

Ex: The agent SystemControl OCCUPIES the position SmartCD (see figure 3). In
pUML (see Figure 4), there is an association between SystemControl class and
SmartCD class.

Guideline G’1.5: The i* relationship COVERS between a position and a role can
be mapped as a respective class association in pUML named COVERS.

Ex: The position Internet Sales COVERS the role CD Delivery and COVERS the
role CD Reserve (see Figure 3). In pUML (see Figure 4), there is an association
between Internet Sales class and CD Delivery class, also an association between
Internet Sales class and CD Reservation class is inserted, both associations are named
COVERS.

Guideline G’1.6: The i* relationship PLAYS between an agent and a role can be
mapped as a respective class association in pUML named PLAYS.

Ex: The agent OfficeBoy PLAYS the role CD Delivery (see Figure 3). In pUML
(see Figure 4), there is an association between OfficeBoy class and CD Delivery class,
in pUML named PLAYS.

Guideline G3: The i* resources can be mapped to pUML classes.

Guideline G’ 3.1: Resources defined in Strategic Dependency (SD) model can be
mapped to pUML in two ways,

• A resource dependency can be mapped to a class in pUML if this dependence
has the characteristics of an object as defined in the object-oriented paradigm.
An association, with associations end that indicate who is the depender, is
created between the class that represents the resource and the class that

represents the actor that depends on the resource. Another association, with
association end that indicates who is the dependee, is created between the class
that represents the resource and the class that represents the actor that is
responsible for availability of the resource.

• A resource dependency can be mapped as an attribute with private visibility in
the class that represents the dependee actor (agent, position or role) if this
dependence cannot be characterized as an object as defined in the object oriented
paradigm.

Ex: In Figure 3, the resource dependency Personal Data will be mapped as an
attribute of the Client class (Figure 4) with visibility private.

Guideline G’3.2: Related to resources (sub-resources) defined in Strategic
Rationale (SR) model.

• A sub resource defined in Strategic Rationale model can be mapped to an
attribute with private visibility in the class that represents the actor (agent,
position or role) in which the sub-resource belongs (provided this sub resource
cannot be understood as an object). Otherwise, this resource will also be
mapped as an independent class in pUML.

Ex: In Figure 3, the sub resource Register Rules belongs to the Internet Sales
position will be mapped to an independent class in pUML (Figure 4).

The remaining set of guidelines described in [13] can be used to complete the

context diagram presented in Figure 4.
Of course not all concepts captured in the early requirements phase will

correspond to software system models. Many elements of the organizational model
are not part of the software model, since not all of the organizational tasks require a
software system. Many tasks contain activities that are performed manually outside
the software system. Likewise, many elements in the software model comprise
detailed technical software solutions and constructs that are not part of the
organizational model. Nonetheless, as we shall see, pUML/OCL also can be used to
represent this information

Register Rules

System Control

Financial

Process Payment()

Inventory

Report on Stock()
Update Stock()

SmartCD
Process Internet Order
Fast [Acess]
Security [Acess]
Browse Catalogue

Update Stock()
Notify CD Arrival()
Order New CD()

occupies

Client
Personal Data

CD Reservation

Office Boy

CD Delivery

plays

Internet Sales

Search CD

Report on Sales()
Process Query()
Register Client()
Assistance to Client()
Fast Search()
Super Search()

covers covers

Fig. 4. Context Class Diagram of the SmartCD System

4. Tool Support

In this section we describe tools that can be used to support modeling in i* and
UML. We begin describing the OME toolset. Then we proceed to review some
extension mechanisms available in the Rational Rose environment and conclude
describing the XGOOD tool.

4.1. Organizational Modeling Environment - OME

OME is a goal-oriented modeling and analysis tool. OME is being developed at the
Knowledge Management Lab at the University of Toronto. The OME tool currently
supports the i*, NFR (Non Functional Requirements) and GRL (Goal-oriented
Requirement Language) modeling.

The OME tool is mainly composed of two parts: the OME kernel and Plugins.
OME kernel has a layered architecture, comprised of three major modules (View
Layer, Model Framework Layer and KB Layer). The KB (Knowledge Base) Layer is

responsible for the storage the objects used as a specific model, their relationships,
and their attributes (pertinent to the model). The major module in the KB is a Telos
[12] repository.

4.2. Extension mechanism for Rational Rose

The Rational Rose is a visual modeling tool that supports Object Oriented
Modeling in UML. Rational Rose also provides an interface (Rose Extensibility
Interface - REI) that makes it possible to customize and extend it.

The REI Model is essentially a Meta model of a Rose model, exposing the
packages, classes, properties, and methods that define and control the Rose
application and all of its functions. The details on the classes contained in each
package, properties and methods of each class can be found in [13] and in the Help
online of the tool Rational Rose.

To communicate with the Rose tool we can write scripts that access the REI model.
The Rational Rose Scripting language is an extended version of the Summit Basic
Script Language. It allows the automation of Rational Rose-specific functions, and in
some cases even the execution of some functions that are not available through the
Rational Rose user interface.

4.3. eXtended GOOD (Goals into Object Oriented Development) Tool

GOOD is the prototype of a tool [16] that supports the automatic mapping of the
descriptions of the organizational requirements modeled in i* (modeled by the OME
tool) in UML Class Diagram (supported the Rational Rose tool).

The GOOD tool [16] was written using a Rose Script Language, making it
impossible to use it with UML modeling tools from different vendors. Moreover,
certain concepts such as contribution links, refinement of actors, restrictions in OCL
(Object Constrain Language) are not supported. Also, often certain elements of the
organizational model are not part of the software system to be developed.
Unfortunately, the GOOD tool does not offer ways to select which elements will (or
not) be mapped. Hence, work is underway to extend the tool (XGOOD).

This new tool should be compatible with any modeling environment. This is
possible through the adoption of technologies such as XMI (XML Metadata
Interchange), which is an open standard, accepted and adopted since 1999 by the
OMG (Object Management Group) [14], for the representation of models and
metadatas. It integrates three standards: MOF (Meta Object Facility) [14], XML
(eXtensible Markup Language) [17] and UML.

O M E
F r a m e w o r k

Model . te l

X G o o d T o o l

XMI F i le +

Diagram
In format ion

Text F i le
(O C L)

Rat iona l Rose ArgoUML

PGML F i l e

+

Fig. 5. The XGood Tool

The new XGOOD tool will map the i* model directly into the UML Class and/or

Use Case Diagrams. The format used to represent the model will be XMI (see figure
5). Moreover, it will provide functionalities such as: selection of adequate guidelines,
choice of elements to be included in the model as well as definition of new guidelines
for the mapping. It will also be possible to include the information of the diagram
inside of XMI file (for the case of the Rational Rose) or in a separate file (for the case
of the ArgoUML). Support to OCL expressions will also be provided.

The XMI uses the syntax of the XML (eXtensible Markup Language) to represent
the models in an file. The models are represented through tags and attributes. It also
uses DTD (Document Type definition) and, more recently in version 2.0, XSD (XML
Schema Definition) as a way to validate and to keep the consistency of the models.
For example, in the Rational suite, the Unisys Rose XML Tools , is capable to
import/export its models to XMI version 1.1. Similarly, the ArgoUML 0.14 [15]
supports XMI version 1.0. Both of them use the DTD to carry through the validation
of the data.

Unfortunately, the modeling tools generally possess a special and proprietor file
format to save its models. This disables the sharing of the information. Hence, a tool
developed for the Rational Rose, for example, would not function with the ArgoUML
files. The XMI deals with only the information of the model, that is, it does not say
anything regarding the information of the diagram. Each tool possesses its way for the
representation of diagram. The Rational Rose includes one additional tag to XMI file:
Diagramming.Diagram., which stores information such as type of the font and the
position of the elements and their dimensions.

The ArgoUML [15] saves the information of the diagram in an PGML file
(Precision Graphics Markup Language - with extension pgml) and the information of
the model in an XMI file (with extension xmi) [15]. To import a XMI file produced in
ArgoUML into the Rational Rose, we must add the information of the class diagram
and/or the use case diagram to the XMI file (see figure 5).

The adoption of a standard, accepted and recognized by the OMG, brings a bigger
flexibility to the XGOOD tool. The support of new modeling tools (for example the

Poseidon [18]) could be carried out without major effort, since these tools imports
XMI files (see Figure 6). However, the biggest problem is the graphical
representation of the models. Today, is still not possible, for example, to directly
export a Rational Rose file to the ArgoUML.

X M I

R a t i o n a l
R o s e A r g o U M L

P o s e i d o n

Fig. 6. The XMI interface

6. Related Work

The area of Requirements Engineering has developed several novel techniques for
early requirements capture. Bubenko emp hasizes the need to model organizations and
their actors, motivations and reasons [8]. In his work, enterprise modeling and
requirements specification are based on the notion that a requirements specification
process, from a documentation point of view, implies populating (instantiating) five
interrelated sub-model, representing areas of knowledge of the organization, which
include an Objectives Model, an Activities & Usage Model, an Actor Model, a
Concept Model, and an Information System Requirements Model. Since the models
are informal, or at best semi-formal, only some verification can be performed
automatically, such as syntactical correctness and connectedness.

In the KAOS framework [7] goals are explicitly modeled and simplified (reduced)
through means-end reasoning until it reaches the agent level of responsibilities.
KAOS provides a multi-paradigm specification language and a goal-directed
elaboration method. The language combines semantic nets for conceptual modeling of
goals, requirements, assump tions, agents, objects and operations in the system;
temporal logic for the specification of goals, requirements, assumptions and objects;
and state-based specifications for the specification of operations. However, agents are
expected to behave as prescribed. This feature makes it difficult to analyze strategic
relationships and implications in KAOS.

Another important issue related to early phase requirements capture is the
representation of the attributes related with quality, such as accuracy, performance,
security, modifiability, etc. In [9] a comprehensive approach for dealing with non-
functional requirements - NFR is presented. Structured graphical facilities are offered
for stating NFRs and managing them by refining and inter-relating NFRs, justifying
decisions, and determining their impact. A current research topic is the extension of
traditional Object-Oriented Analysis to explore the alternatives offered by the non-
functional goal-oriented analysis, which systematizes the search for a solution which

characterizes early phases or requirements analysis, rationalizes the choice of a
particular solution, and relates design decisions to their origins in organizational and
technical objectives [10].

Although UML has been used mainly for modeling software, recent proposals have
used it for describing enterprise and business modeling. For example, [1] claims that
UML is a suitable language for describing both the structural aspects of business
(such as the organization, goal hierarchies, or the structure of the resources), the
behavioral aspect of a business (such as the processes), and the business rules that
affect structure and behavior. In [11] UML is used, from a business perspective, to
describe the four key elements of an enterprise model: purpose, processes, entities and
organization. The challenge is to transfer the information available in the (early)
business models to the (late) software requirements models.

7. Conclusion

In this paper, we have suggested that requirements capture has to be done at
different levels of abstraction (ranging from the early phase to the late phase
requirements). Furthermore, we argue that UML alone is not adequate to deal with all
different types of analysis and reasoning that are required during the requirements
capture phases. Instead, we advocate the use of two complementary modeling
techniques, i* and a precise subset of UML.

To model and understand issues of the application and business domain (the
enterprise) a developer can use the i* framework which allows a better description of
the organizational relationships among the various agents of a system as well as an
understanding of the rationale of the decisions taken. For late requirements capture we
suggest the use of pUML, a subset of UML, which has a well-defined semantics.
Annotations in OCL can also be deployed for describing constraints on the models.
We believe that structuring mechanism present in i* framework, such as agent, role
and position are appropriate to describe complex systems. Thus we improved
previous guidelines to support their mapping. Furthermore, we believe that each
language has its own merits for supporting requirements capture. But as long as
different techniques are used, then a key issue is the development of an integrated
framework to support and guide the interplay of requirement captures activities at the
various levels, and to support traceability and change management. Indeed, the
guidelines presented in the paper are important steps in this direction. They can help
to map the descriptive, early requirements model of the i* technique into a
prescriptive, late requirements model expressed in pUML/OCL.

Further real industrial case studies are also expected. Work is underway to extend
the current tool support to cater for the new guidelines described in this paper (G’1.1,
G’1.2, G’1.3, G’1.4, G’1.5, G’1.6, G’3.1 and G’3.2 guidelines).

References

[1]Erikson, H. and Penker, M.: “Business Modeling with UML: Business Patterns at Work”.
OMG Press .John Wileys & Sons 2000.

[2]Booch, G., Jacobson, I. and Rumbaugh, J.: “Unified Modeling Language User Guide”.
Rational Software Corporation. Addison-Wesley Object Technology Series. Jan., 1999.

[3]Mylopoulos, J., Chung, L and Yu, E.: `From Object-Oriented to Goal-Oriented
Requirements Analysis' Communications of the ACM, 42(1): 31-37, January 1999.

[4] Warmer, Jos B. and Kleppe, Anneke G.: “The Object Constraint Language: Precise
Modeling with UML”. Addison-Wesley Object Technology Series. March, 1999.

[5]Yu, E.: “Why Agent-Oriented Requirements Engineering”. Proceedings of the 4th
International Workshop on Requirements Engineering: Foundations of Software Quality,
Pisa, Italy. E. Dubois, A.L. Opdahl, K. Pohl, eds. Presses Universitaires de Namur, 1998.
pp. 15-22.

[6] Precise UML Group, pUML:http/www.cs.york.uk/puml.

[7] van Lamsweerde, A.: “Requirements Engineering in the year 00: A Research Perspective”.
Invited paper to ICSE’2000, in Proc. 22nd International Conference on Software
Engineering, Limerick, June 2000.

[8] Boman, M., Bubenko, J., Johannesson, P. and Wangler, B. “Conceptual Modeling”.
Prentice Hall Series in Computer Science. 1997.

[9] Chung, L. K., Nixon, B. A., Yu, E., Mylopoulos, J., Non-Functional Requirements in
Software Engineering, Kluwer Publishing, 2000.

[10] Mylopoulos, J., Chung, L., Liao, S., Wang, H. and Yu, E.: “Extending Object-Oriented
Analysis to Explore Alternatives”. Submitted for publication.1999.

[11] Marshal, C.: Enterprise Modeling with UML: Designing Successful Software through
Business Analysis. Addison-Wesley Object Technology Series. 2000.

[12] Mylopoulos, J., Borgida, A., Jarke, M., Jarke, M., Telos: Representing Knowledge About
Information Systems, ACM Transactions on Information Systems, October, 1990.

[13] Castro, J. F. B., Alencar, F. M. R., Cysneiro FILHO, G. A. A., Integrating Organizational
Requirements and Object Oriented Modeling. In: Fifth International Symposium on
Requirements Engineering - RE’01, Toronto. p.p. 146-153 2001.

[14] Object Management Group: “OMG XML Metadata Interchange (XMI) Specification”,
2002. http://www.omg.org/technology/documents/formal/xmi.htm.

[15] A. Ramirez, P. Vanpeperstraete, A. Rueckert, K. Odutola, J. Bennett, and L. Tolke:
“ArgoUML User Manual A tutorial and reference description”, 2003.
http://argouml.tigris.org/.

[16] Csneiros Filho, G.A A.: “Ferramenta para o Suporte do Mapeamento da Modelagem
Organizacional em i* para UML”, (In Portuguese). Centro de Informática, Federal
University of Pernambuco, Brazil, Master Thesis.,Ago, 2001.

[17] Extensible Markup Language (XML). http://www.w3.org/XML/

[18] Poseidon for UML. http://www.gentleware.com/ .

