

Closing the gap between Organizational Modeling and
Information System Modeling1

Alicia Martínez1,2, Jaelson Castro3, Oscar Pastor1, Hugo Estrada1,4

1 Technical University of Valencia
Avenida de los Naranjos s/n, Valencia, Spain

{alimartin, opastor, hestrada}@dsic.upv.es
2 I.T. Zacatepec, Morelos, Mexico

3 UFPE Recife, Pernanbuco, Brazil jbc@cin.ufpe.br
 4CENIDET Cuernavaca, Mor. Mexico

Abstract. The creation of a conceptual schema is a critical feature of the
software production process. The conceptual schema should represent the
structure and behavior of the information system so that the users can perform
their organizational tasks. For this reason, the organizational context needs to
be the starting point for the generation of an initial conceptual schema. This
approach allows us to assure that the functionality of the information system
will be equivalent to the tasks that are executed in the business. However, only
a few research studies offer a systematic approach for carrying out the
equivalence between models. In this paper, a methodological approach for
deriving conceptual schemas from TROPOS business models is presented. The
resultant conceptual schema will be the input of the OO-Method Case Tool,
which implements the automatic software production process. By doing this, we
go a step further in the process of including business modeling as a key piece in
the software production process.

1. Introduction

Software development is an activity that is increasingly complex and that requires
powerful techniques of elicitation, specification and development. Software
engineering has proposed several techniques, methodologies and tools to achieve the
goal of developing information systems that comply with user needs. Nevertheless,
today there still exists a real impedance mismatch between the software product and
its operational environment. At present, it is possible to generate software systems
that are implemented correctly; however, it is not yet possible to assure the
construction of the appropriate software product. The non-correspondence between
the information system and its operational environment make it impossible for the
information system to have the necessary functionality to permit the organizational
actors to perform their organizational tasks.

1 This project is partially funded by the Asociación Nacional de Universidades e Instituciones

de Educación Superior ANUIES, Mexico

The impedance mismatch between the user needs and the functionality of the
information system can be reduced by extending software engineering with business
engineering. Business engineering should consider the problems related to the
understanding of the organizational environment, while software engineering should
consider the problems related to improving the quality and reducing the costs in the
software production process. Both approaches have been analyzed in depth
separately.

In the field of software production processes, there are interesting proposals
[And96], [Sch98], [Pas01] which try to guide the translation of the problem space to
the solution space. Their goal is to precisely specify the mapping between the relevant
concepts of an object-oriented conceptual schema into their corresponding software
representations. These works focus on describing the aspects related to the
implementation of the information systems. However, they do not take into account
the organizational modeling to determine the correct requirements for developing the
software product.

In the field of business modeling, there are also interesting proposals [Bub95],
[Col00], [Kol03], [Kou00] which focus on specifying the semantic of a business
process in a very precise way. However, they do not provide effective solutions to the
problems of methodological and systematic translation of the business model into
information system specifications. The lack of mechanisms for defining the
traceability between models leads to a translation process which is costly in both time
and effort.

At present, there are very few research studies which focus on the problem of the
mapping process between the business model elements and the conceptual schema
elements of the information system. This is a fundamental task in the software
development process. It is necessary for the translation between models to be carried
out in a methodological process to assure its application in real software development
environments.

In this paper, we propose the use of the business model as a starting point in order
to obtain a conceptual schema of the information system. To do this, we propose
joining two well-known techniques: The Tropos Framework from the field of
business modeling and the OO-Method Case Tool from the field of software
production process.

The paper is structured as follows: Section 2 presents the methodologies used in
this paper. Section 3 presents an overview of the proposed method. Section 4 presents
the conceptual schema generation method. Finally, section 5 presents the conclusions
and further work.

2. Methodologies

This section presents the methodologies used in this paper: The Tropos Framework
and the OO-Method. Both approaches are combined to obtain the conceptual schemas
of an information system.

2.1 The Tropos Methodology

Tropos [Cas02] proposes a software development methodology and a development
framework which are based on concepts used to model early requirements. They are
based on the premise that in order to build software that operates within a dynamic
environment, it is necessary to analyze and explicitly model that environment in terms
of actors, their goals and their dependencies on other actors.

To support modeling and analysis during the early requirements, Tropos adopts the
concepts offered by i* [Yu95], a modeling framework defined in terms of concepts
such as actors and social dependencies among actors, including goal, softgoal, task
and resource dependencies.

In Tropos, we have the following concepts:
• Actor: This is an actor is an active entity that carries out actions to achieve

goals by exercising its know-how.
• Dependency: This describes an intentional relationship between two actors. It

is composed by: a) Depender: the actor who is dependent on another actor, b)
Dependee: the actor on whom another actor depends, c) Dependum: the task,
goal, resource or softgoal on which the relationship is focused.

• Goal dependency: This a dependency in which an actor depends on another
actor to fulfill a goal, without prescribing the way in which it should be carried
out.

• Resource dependency: This is a dependency in which an actor depends on
another actor to deliver a resource that can be either material or informational.

• Task dependency: This is a dependency in which an actor depends on another
actor to carry out a task, establishing the way in which it should be performed.

• Softgoal dependency: This is similar to the goal dependency, with the
difference that the goal has not been precisely defined.

By using these elements, it is possible to create the i* Strategic Models: the
Strategic Dependency Model and the Strategic Rationale Model.

The Strategic Dependency Model (SD) shows the dependencies that exist between
actors in a business process. The model is represented by a graph where nodes
represent actors, and where the links represent the dependencies that exist between
these actors to achieve their goals, carry out tasks and provide or request resources.

The Strategic Rationale Model (SR) carries out a deeper reasoning of the motives
that exist behind each dependency relationship. This is useful for representing tasks
that have to be carried out by the actors to achieve the goals which are expected of
them, as well as for rethinking new ways of working. This model is based on the
elements of the dependency model, adding a) task decomposition links which allow
us to represent the combination of necessary tasks to achieve a goal, and b) mean-
ends links whose objective is to present the diverse alternatives that can be taken to
fulfill a task or goal.

The Tropos methodology has been used in several application areas, including
requirements engineering, software processes and business process reengineering.
However, in Tropos Methodology, there is still no method for using the business
models to produce information system in an automatic way.

2.2 The OO-Method Case Tool

The OO-Method is a Case Tool to automate the software production process. It was
created on the formal basis of OASIS, an object-oriented formal specification
language for Information Systems. It is possible to distinguish two modeling
components in OO-Method: the conceptual model and the execution model. The
conceptual model specifies what the system is (problem space) in a notation based on
UML, and the execution model guides the representation of these requirements in a
specific software development environment (solution space), which is centered on
how the system will be implemented.

The abstract execution model is based on the concept of the Conceptual Modeling
Construct. The OO-Method provides a well-defined software representation of these
constructs in the solution space. A concrete execution model based on a component-
based architecture has been introduced to deal with the peculiarities of the
component-based system. The implementation of this mapping from problem space
concept to solution space representations opens the door to the automatic generation
of executable software components. These software components together constitute a
software product that is functionally equivalent to the requirements specification
collected in the conceptual modeling step. In this proposal, the OO-Method is used to
generate information systems from the conceptual schemas derived from the business
model.

3. Overview of the proposed method

The strategy of our conceptual schema generation method consists in isolating the
relevant information from the business model and using it to generate the elements of
the information system. To do this, the software system actor must be inserted inside
the original business model. Then, it is necessary to determine the relevant business
goals2 to be automated by the software system. Afterwards, the tasks and resources
needed to accomplish the goal are then redirected toward the system actor. Therefore,
the satisfaction of the goals will not be altered; only the actor responsible for its
fulfillment is modified. The internal tasks in the software system actor must be
defined in order to satisfy its goals. Finally, the information contained in the software
system actor is used to create the elements of an object-oriented conceptual schema
for the OO-Method Case Tool. The OO-Method tool translates the elements of the
conceptual schema into elements of an imperative program in a specified target
language.

In order to illustrate our approach, we used the Conference Review Process case
study. The purpose is to model the business process of this type of review system in
order to obtain a software system that handles the process of submission, assignment,
evaluation and selection of papers for a conference.

2 A goal dependency is relevant if its fulfillment depends on actions carried out by the system

actor.

4. Conceptual Schema Generation Method based on
Organizational Models

In this section, we describe in detail the steps presented in the previous section.
Section 4.1 shows how to use the organizational model to obtain the relevant
information to be automated. Section 4.2 shows the specification process of
organizational models. Section 4.3 shows the method to translate the organizational
model specification into a conceptual model of the information system. The case
study is used to show the application of the method.

4.1 Selecting the relevant information to be automated

The first step of the method is the selection of a business model represented in the
Tropos Framework. In our case study, the following events are presented: the Chair of
the Program Committee (PcChair) determines the topics of interest and selects the
members of the program committee (PcMember). The members can delegate the
responsibility of review to additional reviewers (Reviewers). Finally, the PcMembers
and Reviewers send the evaluations to the PcChair indicating acceptance or rejection.
Figure 1 shows the Strategic Rationale Model for the case study.

Figure 1. Strategic Rationale Model for the case study Conference Review Process

obtain
papers

Submit
paper

send interest
list

obtain quality
reviews

PcChair
paper

submit
paper

PcMember

Reviewer

Author

notification

obtain the highest
number of quality

papers

obtain the highest
number of quality

papers

send a massive call
for paper

assign paper to
adequate PcMember

select
Reviewers

obtain quality
reviews

send notifications and
reviews to the Authors

assign
comments

assign
evaluation

obtain papers

send papers to
Reviewers to

reviews

select
PcMembers

generate
paper list

identify and
resolve

conflicts

send papers to
PcMember to

review

obtain
interest list

obtain list
of interest

papers

assign
comments

assign
evaluation

to do quality
reviews

send reviews

assign
qualifications

papers

assign paper to
adequate Reviewers

obtain
papers

sort paper

send notifications
and reviews to the

Authors

resolve
critical cases

reviews
send

reviews

reviews

send
Reviews

send reviews

obtain quality
reviews

To obtain
quality
reviews

assign
qualifications

assign quickly
the papers assign secure of

the papers

assign paper to
adequate

Reviewers

assign paper to
adequate

PcMember

obtain quickly
the reviews

To do
quality
reviews

Sending secure
of reviews

Sending secure
of notifications

obtain
notification

Send notifications
and reviews to

Authors

Resource

Task

Goal Task-decompo-
sition link

LEGEND - Strategic Rationale Model

Actor
Actor Boundary

Softgoal

<module>

<module>
<module>

<module>

obtain
papers
obtain
papers

Submit
paper

send interest
list

send interest
list

obtain quality
reviews

PcChairPcChair
paper

submit
paper
submit
paper

PcMemberPcMember

ReviewerReviewer

AuthorAuthor

notification

obtain the highest
number of quality

papers

obtain the highest
number of quality

papers

obtain the highest
number of quality

papers

obtain the highest
number of quality

papers

send a massive call
for paper

send a massive call
for paper

assign paper to
adequate PcMember

select
Reviewers

obtain quality
reviews

obtain quality
reviews

send notifications and
reviews to the Authors
send notifications and
reviews to the Authors

assign
comments

assign
comments

assign
evaluation

assign
evaluation

obtain papersobtain papers

send papers to
Reviewers to

reviews

select
PcMembers

generate
paper list
generate
paper list

identify and
resolve

conflicts

identify and
resolve

conflicts

send papers to
PcMember to

review

send papers to
PcMember to

review

obtain
interest list

obtain
interest list

obtain list
of interest

paperspapers

assign
comments

assign
evaluation

to do quality
reviews

send reviews

assign
qualifications

assign
comments

assign
comments

assign
evaluation

assign
evaluation

to do quality
reviews

send reviewssend reviews

assign
qualifications

assign
qualifications

paperspapers

assign paper to
adequate Reviewers

assign paper to
adequate Reviewers

obtain
papers
obtain
papers

sort papersort paper

send notifications
and reviews to the

Authors

send notifications
and reviews to the

Authors

resolve
critical cases

reviewsreviews
send

reviews
send

reviews

reviewsreviews

send
Reviews

send
Reviews

send reviewssend reviews

obtain quality
reviews

To obtain
quality
reviews

obtain quality
reviews

To obtain
quality
reviews

To obtain
quality
reviews

assign
qualifications

assign
qualifications

assign quickly
the papers assign secure of

the papers

assign paper to
adequate

Reviewers

assign paper to
adequate

Reviewers

assign paper to
adequate

PcMember

obtain quickly
the reviews

To do
quality
reviews

To do
quality
reviews

Sending secure
of reviews

Sending secure
of notifications

obtain
notification

obtain
notification

Send notifications
and reviews to

Authors

Send notifications
and reviews to

Authors

Resource

Task

Goal Task-decompo-
sition link

LEGEND - Strategic Rationale Model

Actor
Actor Boundary

Softgoal

Resource

Task

Goal Task-decompo-
sition link

LEGEND - Strategic Rationale Model

Actor
Actor Boundary

Softgoal

<module>

<module>
<module>

<module>

The next step consists of determining the type of interaction of each organizational
actor model with the software system actor. This is called Conference Review system
in our case study. An important concept used in this process is the concept of
“module”. A module represents the set of tasks performed by the actor to satisfy its
goals with another actor. The modules are represented by internal task-refinement
trees in the actors of the Strategic Rationale Model. An actor may have more than
one module. This indicates that the actor should fulfill more than one goal in the
organizational model. In our case study, the PcChair has the modules: assign paper
to adequate PcMembers, obtain the highest number of quality papers, obtain quality
reviews and send notifications and reviews to the Authors (Figure 1).

We present guidelines to insert the actor system into the organizational model.
Figure 2 shows the result of the application of these guidelines to our case study.

Guideline 1. To insert the actor system into the organizational model and to
identify the modules that need to be delegated to the information system. To identify
the modules that need to be redirected towards the software system actor, it is
necessary to do a softgoal analysis. In i* notation, the softgoal represents the desired
qualities to satisfy a goal (speed, security, performance) and therefore to perform the
module. It is then possible to use the softgoal associated to each of the goal
dependencies to determine whether they should be automated. For example, in our
case study, one of the modules of the PcChair is assign paper to adequate
PcMembers. The goal dependency associated to this module is “assign paper to
adequate PcMembers”. At the same time, the softgoals associated to this goal are
“assign the papers quickly”, “safe assignment of papers”. Based on these
requirements, these goals need to be automated using the information system.

Guideline 2. To move the modules selected from the organizational actors to the
system actor. This is only necessary when the main task (module root) needs to be
automated. In the case in which only one subtask of the module needs to be
automated, the task is considered to be the root of the module, and the necessary
subtasks for accomplishing the goal must be defined.

To move each module, there are two steps. The first step is to create a copy of the
module root in the system actor. The second step is to create a task dependency (with
the same name as the module) between the organizational actor and the system actor.
This task dependency indicates that the software system actor is now responsible for
completing the task. There may be manual operations in the modules, where the
system can only be used to send or receive information. In these cases, it is necessary
to leave these manual operations in the modules of the organizational actor.

To move the modules from the organizational actor to the software system actor,
the name of the actor that was the container of the original module must be included
in the module.

 Guideline 3. There are tasks that require information from the organizational
actors when these tasks are transferred to modules in the system actor. In this case, it
is necessary to create new resource dependencies between the system actor and the
organizational actors. This is the case with the task Generate PcMember list, which
requires information from the PcChair (when transferred to the system actor) as the
system cannot generate the PcMember List by itself.

Guideline 4. When resource dependencies are created, it is necessary to create new
tasks for sending and receiving resources. We recommend creating only task and

resource dependencies between the organizational actor and the system actor. This
avoids putting goal dependencies that would later be derived in task or resource
dependencies.

As a result of the process of selection of relevant information, a new organizational
model is created (Figure 2). The following are placed in this new model: a) the actors
with dependencies with the software system actor, b) the resources and task
dependencies between the organizational actor and the software system actor, and
finally c) the goal dependencies that have been derived in task and resource
dependencies between the organizational actors and the software system actor,

In this way, this model represents the interaction between the information system
and the final users. The softgoal dependencies, which are used to select the relevant
information to be automated, are not shown in this new organizational model.

4.2 Creating the specification of organizational model

In this paper, we propose using a KAOS-like specification language to represent the
elements of the new organizational model. KAOS [Dar93] is a formal framework
based on temporary logic to elicit and represent the goals that the system software
should achieve.

Figure 2 Insertion of the software system actor into the organizational model

System

Author

paper

notification

submit
paper

assign paper
to adequate
PcMember

send notifications
and reviews to the

Authors

send
review

reviews

paper

list of
interest

send
reviews

reviews

PcMember

Obtain quality
reviews

assign paper to
adequate Reviewers

obtain the highest
number of quality

papers

send notifications
and reviews to the
Authorsassign paper to

adequate PcMember

Obtain quality
reviews

PcChair

assign paper to
adequate

PcMember

generate
paper list

identify and
resolve

conflicts

send papers to
PcMember to

review

obtain
interest list

resolve
critical cases

send notifications
and reviews to

Authors

assign
comments

assign
evaluation

to do quality
reviews

send reviews

assign
qualifications

obtain papers

send notifications and
reviews to the Authors

sort paper

PcMembers
list

obtain
PcMembers

list

Reviewer

SystemSystem

AuthorAuthor

paperpaper

notificationnotification

submit
paper

submit
paper

assign paper
to adequate
PcMember

assign paper
to adequate
PcMember

send notifications
and reviews to the

Authors

send notifications
and reviews to the

Authors

send
review
send

review
reviewsreviews

paperpaper

list of
interest
list of

interest

send
reviews

reviewsreviews

PcMemberPcMember

Obtain quality
reviews

assign paper to
adequate Reviewers
assign paper to
adequate Reviewers

obtain the highest
number of quality

papers

send notifications
and reviews to the
Authorsassign paper to

adequate PcMember

Obtain quality
reviews

PcChairPcChair

assign paper to
adequate

PcMember

generate
paper list
generate
paper list

identify and
resolve

conflicts

identify and
resolve

conflicts

send papers to
PcMember to

review

send papers to
PcMember to

review

obtain
interest list

obtain
interest list

resolve
critical cases

send notifications
and reviews to

Authors

assign
comments

assign
comments

assign
evaluation

assign
evaluation

to do quality
reviews

send reviewssend reviews

assign
qualifications

assign
qualifications

obtain papersobtain papers

send notifications and
reviews to the Authors
send notifications and
reviews to the Authors

sort papersort paper

PcMembers
list
PcMembers
list

obtain
PcMembers

list

Reviewer

In spite of the fact that KAOS was developed to represent information system
goals, its syntax and semantics turn out to be especially appropriate for formally
representing the conceptual primitives of the strategic models of the framework i*.
This is due to the capacity of KAOS to represent modeling concepts at diverse
abstraction levels.

In this paper, we define a set of specification rules to specify each one of the
elements of the Tropos organizational model in the KAOS-like language. The
specification rules are explained in the following subsections.

4.2.1 Actor Specification
The actors of the organizational model are represented using the concept of Agent of
the KAOS language. An agent is an object which is a processor for some actions
[Dar93]. The definition of an agent is composed of the agent name as well as a list of
attributes. We have included, by default, an attribute with the same name as the actor
to indicate the identification attribute of the actor.

In our case study, there are four actors with dependency relations with the software
system actor: PcChair, PcMember, Reviewer and Author. Table 1 shows the
specification of the actors PcMember and Author in KAOS language.

Agent PcMember
Has PcMember, name, email, affiliation: String
End PcMember
Agent Author
Has Author, name, email, affiliation: String
End Author

Table 1 Specification of the actors PcMember and Author in KAOS language

4.2.2 Goal Specification
The goal dependencies are represented using the concept of SystemGoal of the KAOS
language. SystemGoals are application-specific goals that must be achieved by the
composite system [Dar93]. The definition of the SystemGoal is composed of:
a) The type of the goal (Achieve, Cease, Maintain, Prevent and Optimize [Dar93]).

In our proposal, we use Achieve Goals to express the fact that the goal needs to be
satisfied in a current or a future state.

b) The specific category of the domain-level goal (SatisfactionGoal,
InformationGoal, SafetyGoal, ConsistencyGoal and RobustnessGoal) declared in
the clause IntanceOf. In this case, we use SatisfactionGoals to express the
satisfaction of the agent request.

c) The clause Concerns, which links the goal with the objects. In this case, we use
the clause Concerns to indicate the depender and dependee actors. Table 2 shows
the specification of the goal “obtain the highest number of quality papers” in
KAOS language.

SyemGoal Achieve [Obtain the highest number of quality papers]
InstanceOf SatisfactionGoal
Concerns PcMember, Author

Table 2 Specification of the goal Obtain the highest number of quality papers in KAOS
language

4.2.3 Resource Dependency Specification
The resource dependencies of the organizational model are represented using the
concept of Entity of the KAOS language. An Entity in KAOS is an autonomous
object; its instances may exist independently from the other instances [Dar93]. The
Entity definition is composed of the entity name as well as a list of attributes.
Generally, the first of these attributes is the identification attribute of the entity.

In our case study, there are four resource dependencies between the actor and the
software system actor: Interest list, paper, review and notification.

In the organizational model, there are resources that depend on other resources or
actors to be created. In our case study, for example, a Notification is always linked
with a Paper, and the existence of the Notification is conditioned by the action of
generation a notification executed by the PcChair. These types of resources have a
constant attribute (the name of the resource or actor to which they are linked) in their
KAOS specification. The rest of the resources of the organizational model do not
include a constant attribute.

Table 3 shows the specification of the resources Paper and Notification in KAOS
language.

Entity Paper
Has paperId: Long, title: String, coauthors: SetOf[Author], abstract: String, topics: String, status: String
End Paper
Entity Notification
Attribute Constant: Paper
Has NotificationId: Long, PaperId: Long, sendingaddress: String, comments: SetOf[String], evaluation:
String
End Notification

Table 3 Specification of the resources Paper and Notification in KAOS language

4.2.4 Specification of links in resource dependencies
In the i* framework, the relationships between actors are represented by dependency
links, in which there are no direct links between the actors. The dependency links
connect the resources with the depender and dependee actors. The links are
represented using the concept of Relationship of the KAOS language. A Relationship
is a subordinate object. The existence of its instances depends upon the existence of
the corresponding object instances linked by the relationship [Dar93]. The KAOS
specification of a resource contains a) the resource name, b) the relation type (Send,
Sentto or Receive) and c) the cardinalities of the relationships among the resource and
the actors that send and receive it. In this way, the relationship is specified as Actor-
Resource-Actor. One of the actors is obtained directly from the resource dependency

with the system actor (Actor-Resource-System), as well as the resource. The other
actor is obtained from the name of the actor included in the specification of the
module, as was mentioned in 4.1. For example, in the resource dependency Paper of
the case study shown in Figure 2, the Author sends the resource Paper to the Software
System Actor. From the module Obtain Papers, we obtain the PcChair Actor as the
original actor of the dependency. Therefore, the elements of this resource dependency
are: Author, Paper and PcChair.

The cardinalities of the resource dependency are used to indicate that: a) an Author
can send 1 or more Papers, b) a Paper could be sent by 1 or more Authors, c) a Paper
is sent only to a PcChair, and finally, d) a PcChair can receive 1 or more Papers.

Table 4 presents the KAOS representation of the links in the Paper resource
dependency between the Author and the PcChair.

Relationship
Links Author {role send, Card 1..*}
Links Paper {role sentto, Card 1..*}

Relationship
Links PcChair {role receive, Card 1..*}

 Links Paper {role sentto, Card 1..1}

Table 4 KAOS specification of links in the Paper resource dependency

4.2.5 Task Dependency Specification
The task dependencies are represented using the concept of Action in the KAOS
language. The action specification in KAOS is composed of input parameters that
permit the execution of the actions. The output parameters represent the resources
generated as a result of these actions. For example, in the case study, it is possible to
determine that the action Submit Paper generates the resource Paper as output of the
action. The specification of the actions also contains the preconditions and
postconditions of the action.

In the proposal presented in this paper, the clause RelatedGoal was included in the
Action definition to link it with the goal that is satisfied. It also allows us to determine
the depender and the dependee actors of the task dependency. For example, the task
Submit Paper allows us to satisfy the goal Obtain the highest number of quality
papers. From this goal, it is possible to obtain the PcChair and the Author as actors of
the goal dependency, and in the same way, as actors of the task dependency. Table 5
presents the KAOS specification of the task Submit Paper.

Action SubmitPaper
Input String {Arg title}, String {Arg topics}, SetOf[string] {Arg abstract}, String {Arg status},
SetOf[String]{Arg author}, SetOf[String]{Arg coauthors}
Output Paper {Arg paper}
Precondition RegisterAuthor (author)
Postcondition paper.title = title and paper.topics = topics and paper.abstract = abstract and paper.status =
“sending” and paper.author = authors and paper.coauthors = coauthors
RelatedGoal Obtain the highest number of quality papers
End SubmitPaper

Table 5 KAOS specification of the Submit Paper task

4.2.6 Specification of internal tasks in the software system actor
The specification of internal tasks is the same as the task dependency but the clause
RelatedTasks is included. This clause was included in our proposal to define the
internal tasks in the software system actor. The internal tasks of the system actor arise
as a result of moving modules from the organizational actors. For this reason, the
internal tasks are linked to more general tasks using task decomposition links or
mean-ends links. The clause RelatedTasks allows us to differentiate the task
dependency from the task decomposition. Table 6 presents the KAOS specification of
the task Assign evaluation. This task is linked to the “to do quality review“ module in
the PcMember Actor (Figure 2).

Action Assign evaluation
Input …
Output ..
Preconditions …
Postconditions …
RelatedTask to do quality reviews
End SubmitPaper

Table 6 KAOS specification of the Assign evaluation task

The application of these specification rules allows us to obtain the complete
specification of the organizational model. This specification will be used to generate
the conceptual schema of the information system.

4.3 Generation of the conceptual schema for the information system

The generation of a conceptual schema from the organizational model (with the
software system actor as part of the model) allows us to accurately and precisely
determine the structure and behavior of the information system expected. In this
approach, the conceptual schema elements are directly derived from the
organizational elements. In this way, it is possible to assure that the functionality of
the information system will be equivalent to the tasks executed in the business.

The process of conceptual model construction uses the KAOS-like specification of
the organizational models as input. The KAOS-like specification is used to generate a
conceptual schema specified in OASIS language, the support language of the OO-
Method Case Tool. The translation process is presented in the following sections.

4.3.1 Translation of Actors
The actors with dependence relationships with the system actor are represented as
classes in the conceptual schema in OASIS language.

The identification attribute of the actors of the organizational model is used to
create the identification attribute of the OASIS classes, which represent these actors.
The rest of the actors´ attributes are defined as variable attributes in the specification
of the classes. This is a consequence of the lack of information of the organizational
model to determine the stability of its attributes. For this reason, it is not possible to
carry out a distinction between constant attributes and variables. In our case study, for

example, the attributes PcMemberId and AuthorId are used to create the identification
attribute of the classes PcMember and Author.

The mechanisms of creation and destruction of instances as well as the mechanism
of modification of variable attributes are placed by default in the OASIS specification.
Table 7 shows the OASIS specification for the classes PcMember and Author.
class Author
identification
 AuthorId: (AuthorId) ;
constant_attributes
 AuthorId : nat ;
variable attributes
 name : string; email : string; affiliation: string;
 ...
end_class

Class PcMember
identification
 PcMemberId: (PcMemberId);
constant_attributes
 PcMemberId: nat;
variable attributes:
 name: string; email: string; affiliation: string;
 ...
end_class

Table 7 Specification of the actors Author and PcMember in OASIS Language

The actors´ classes of the information system are extended during the translation
process of the rest of the elements of the organizational model.

4.3.2 Translation of resource dependencies
The resources of the organizational model are translated into classes of the OASIS
conceptual schema. Their attributes are used to create the attributes of their
corresponding classes in the conceptual model.

The existence of a constant attribute in the KAOS description of a resource allows
us to create a relationship between the class of the resource described and the class of
actor or resource which is specified as a constant attribute. To determine the
relationship type, it is necessary to determine whether the class placed as a constant
attribute is “part of” the class which contains it. In this case, the relationship is an
aggregation. In other cases, the relationship could be an association relationship.

In our case study, for example, the Notification appears as a constant attribute of
the resource Paper (as was commented in 4.2.3). In this case, the Notification is part
of the Paper. Therefore, an aggregation between the classes Notification and Paper is
created. It must be pointed out that there is no information that allows us to identify
the type of aggregation or association obtained from the resource dependencies.
Therefore, default values (inclusive, dynamic, univalued, disjoint, strict, notnull) are
used to define the relationships, however, it is possible to redefine these values in the
application of the following translation steps. The values for the associations and
aggregations are shown in the next subsection (4.3.3).

Table 8 shows the OASIS specification for the classes Paper and Notification.
Complex class Paper aggregation of
Notification(inclusive,dynamic,univalued,disjoint,strict, notnull);
identification
 PaperId: (PaperId);
constant_attributes
 PaperId: Nat;
end_class

Class Notification
identification
 NotificationId: (NotificationId);
 PaperId: (PaperId);
constant_attributes
 NotificationId: Nat; PaperId: Nat;
end_class

Table 8 Specification of the resource Notification and Paper in OASIS Language

4.3.3 Translation of links between actors in resource dependencies

The links and their corresponding cardinalities are used to specify relationships

(according to the OO-Method Methodology [Alb03]) between the classes obtained
from the actors and resources. The cardinality between the classes allows us to
determine the type of the relationship: inclusive/relational, static/dynamic,
univalued/multivalued, nodisjoint/disjoint, flexible/strict, null/not-null [Alb03]. The
aggregations are indicated by inclusive relationships, and the associations are
indicated by relational relationships. For example, using the KAOS specification
shown in Table 4, it is possible to do the analysis of cardinalities shown in Table 9.

{paper}
Relationship SentBy
Links Author {role send Card 1..*} {an Author could have 1 or more Papers, then the cardinality of the
class Author is 1..*}
Link Paper {role sentto Card 1..*} {a Paper could have 1 or more Authors }

Table 9 Analysis of relationships in KAOS language

From these cardinalities, it is possible to determine that the relationship is: a)

relational (the Paper and the Author are not encapsulated), b) static (the Author is
always linked with the Paper), c) multivalued (a Paper could have 1 or more
Authors), d) nodisjoint (an Author could participate in several Papers), e) strict (an
Author need to participate in the conference with at least a Paper) and, finally, f)
notnull (A Paper cannot exist without an Author). Therefore, as the relationship is
relational, an association is between the classes Author and Paper is created. In
OASIS language, the associations are represented as relational aggregations:

complex class Paper aggregation of
Author (relational, static, multivalued, nodisjoint, strict, notnull);

4.3.4 Translation of task dependencies

The task dependencies are translated into events of the class of the actor that

executes the action. The event type could be obtained from the KAOS specification
following the guidelines below:
a) If a resource is generated or modified as a result of the task (the KAOS

specification of the task dependency contains the name of the resource, as was
mentioned in 4.2.5), then it will be necessary to determine if there is an
aggregation or association between the classes of the resource and the actor. In
this case, the task dependencies are translated into shared events in the class of the
actor that executes the action and in the class of the resource generated by the task.
This indicates that the operation invoked by the actor changes the values of the
attributes of the resource class, which produces a change in the object state.

b) If a resource is not generated as result of the task, then the event will be specified
as a Private event in the class of the actor.

The resource generation specification in the organizational model is translated into
the event of creation of instances in the class that represents the resource in OASIS
language. In our case study, we can establish that the action Submit Paper (executed
by the Author actor) is the event that creates an instance of the class Paper. As a
result, the Author will have the shared event Submit Paper, which leads to new papers
in the system.

The postconditions of the actions of the organizational model are translated into
valuations of the operations of the resource generated by the action. In the case study,
the postconditions of the action SubmitPaper correspond to the valuations of the event
SubmitPaper in the class Paper.

4.3.4.1 Translation of the internal task in the system actor
These tasks are translated as private events in the actor classes that execute the

most general task. In our case study, the tasks Generate PcMember List, Obtain
Interest List, Obtain Paper and Send Paper are translated as private operations of the
PcChair class.

By applying the translation steps to all the organizational model elements, it is
possible to obtain the specification of an OO-Method conceptual schema. Table 10
shows a fragment of the OO-Method specification for the Paper class.

complex class Paper aggregation of
 Author (relational, static, multivalued, nodisjoint, strict, notnull);
 Notification (inclusive, dynamic, univalued, disjoint, strict, notnull);
 Review (inclusive, dynamic, multivalued, disjoint, strict, notnull);
 PcMember (relational, dynamic, multivalued, nodisjoint, strict, notnull);
 Reviewer (relational, dynamic, multivalued, nodisjoint, strict, notnull);
 PcChair (relational, dynamic, univalued, disjoint, strict, notnull);
identification:
 PaperId: (PaperId);
constant_attributes
…
Variable_attributes
…
private events
 var
 ntitle: String; nauthor: String; ncoauthors: String; nabstract: String; ntopics: String; nstatus: String;
 end_var
 crear () new;
 eliminar (paperId) destroy;
shared_events
 SubmitPaper(ntitle, nauthor,ncoauthors,ntopics) with Author NEW;
 AssignPaperPcMember() with PcChair;
Valuation
 [modification_data(ntitle,nauthor,ncoauthors,nabstract,nstatus)] title=ntitle and author=nauthor and
 coauthors = ncoauthors and nabstrac = abstract and topics = ntopics;
 [SubmitPaper(ntitle, nauthor,ncoauthors,ntopics)] title= ntitle and author = nauthor and coauthors =
 ncoauthors and ntopics = topics;
 [AssignPaperPcMember ()] status = “assigned”
end_class

Table 10 Specification of the Paper Class in OASIS language.

Figure 3 Conceptual Schema of the Conference Review System case study.

Figure 3 shows the graphical representation of the complete conceptual schema

obtained from the translation process for the case study. The conceptual schema in
OASIS language is the input of the OO-Method Case Tool, which automatically
establishes the correspondence between the conceptual primitives of the OASIS
conceptual schema and the corresponding elements in a target programming language.

5. Conclusions and further work

This paper presents a method for translating an organizational model into
specifications of a conceptual schema for information systems. As a first step in the
method, an organizational model which has been previously specified in the i*
framework is selected. This Model is then enriched with the inclusion of the system
actor. This facilitates the identification of the tasks to be automated using the
information system. A method for translating each of the elements of the
organizational model into specifications of a conceptual model described in OASIS
language is also presented.

We are now working on developing a Case Tool which performs the
methodological process described in this paper. This CASE Tool will assure the
correspondence between the business model and the information system

Notification

Interest_list

PcMemberId
Preferential_topics

PcMember

PcMemberId
name
email
affiliation

Send_Interest_List()
Assign _Qualifications()
Assign_Comments()
Assign_Evaluation()
Send_Review()

Author

AuthorId
name
email
affiliation

Submit_Paper()

Reviewer
ReviewerId
name
email
affiliation

Assign _Qualifications()
Assign_Comments()
Assign_Evaluation()
Send_Review()

Review

ReviewId
Clarity
relevance
final_recommendation
final_review
status

Send_Review()

Paper
PaperId
author
coauthor
title
abstract
topics
status
Submit_Paper()
Assign_Paper_PcMember()

NotificationId
PaperId
sendingaddress
comments
evaluation

3..*

1..*

1..*

1..*

1..*

1..*

1..1

1..*

3..*

1..1

1..1

1..*

1..1

PcChair

PcChairId
name
email
affiliation

Assign_Paper_PcMember()
Generate_PcMember_List()
Identify_and_Resolve_Conflicts()
Send_Notification()
Sort_Papers()
Resolve_critical_cases()

1..*

1..1

1..1

Notification

Interest_list

PcMemberId
Preferential_topics

Interest_list

PcMemberId
Preferential_topics

PcMember

PcMemberId
name
email
affiliation

Send_Interest_List()
Assign _Qualifications()
Assign_Comments()
Assign_Evaluation()
Send_Review()

Author

AuthorId
name
email
affiliation

Submit_Paper()

Author

AuthorId
name
email
affiliation

Submit_Paper()

Reviewer
ReviewerId
name
email
affiliation

Assign _Qualifications()
Assign_Comments()
Assign_Evaluation()
Send_Review()

Review

ReviewId
Clarity
relevance
final_recommendation
final_review
status

Send_Review()

Paper
PaperId
author
coauthor
title
abstract
topics
status
Submit_Paper()
Assign_Paper_PcMember()

NotificationId
PaperId
sendingaddress
comments
evaluation

3..*

1..*

1..*

1..*

1..*

1..*

1..1

1..*

3..*

1..1

1..1

1..*

1..1

PcChair

PcChairId
name
email
affiliation

Assign_Paper_PcMember()
Generate_PcMember_List()
Identify_and_Resolve_Conflicts()
Send_Notification()
Sort_Papers()
Resolve_critical_cases()

1..*

1..1

1..1

References

[Alb03] Manoli Albert, Vicente Pelechano, Joan Fons, Marta Ruiz, Oscar Pastor:
“Implementing UML Association, Aggregation, and Composition. A Particular
Interpretation Based on a Multidimensional Framework”, Proceedings of the CAISE 03, pp
143-158, Austria, 2003.

 [And96] Andrade Luis, Amílcar Serdanas, “Banking and Management Information System
Automation”, proceedings of the 13th world congress IFAC, Volume L, 1996.

 [Bub95] Bubenko, J. A., jr and M. Kirikova, “Worlds in Requirements Acquisition and
Modelling”, in: Information Modelling and Knowledge Bases VI. H.Kangassalo et al.
(Eds.), IOS Press, pp. 159– 174, Amsterdam, 1995.

[Cas01] Jaelson Castro, John Mylopoulos, Fernanda M. R. Alencar, Gilberto A. Cysneiros
Filho: Integrating Organizational Requirements and Object Oriented Modeling. Proceedings
of the RE 2001, pp146-153, Canada, 2001.

[Cas02] Castro J. Kolp M. Mylopoulos J. “Towards Requirements-Driven Information Systems
Engineering: The Tropos Project”. Information System Journal, Elsevier, Vol 27, pp 365-
389, 2002.

[Ces02] Cesare S. Mark Lycett, “Business Modelling with UML, distilling directions for future
research”, Proceedings of the Information Systems Analysis and Specification (ICEIS
2002), pp. 570-579, Ciudad-Real, Spain, 2002.

[Col00] Colette Rolland, Janis Stirna, Nikos Prekas, Pericles Loucopoulos, Anne Persson,
Georges Grosz: Evaluating a Pattern Approach as an Aid for the Development of
Organisational Knowledge: An Empirical Study. Proceedings of the CAiSE 00, pp176-191,
Sweden, 2000.

[Dar93] Dardenne, A. Van Lamsweerde and S. Fickas, “Goal Directed Requirements
Acquisition,” Science of Computer Programming, vol. 20, pp. 3-50, North Holland, April
1993.

[Kol03] Manuel Kolp, Paolo Giorgini, John Mylopoulos: Organizational Patterns for Early
Requirements Analysis. Proceedings of the CAiSE 03, pp 617-632, Austria, 2003.

[Kou00] Manolis Koubarakis, Dimitris Plexousakis: A Formal Model for Business Process
Modeling and Design. Proceedings of the CAiSE 00, pp 142-156, Sweden, 2000.

[Lou95] Loucopoulos Pericles, Evangelioa Kayakli, “Enterprise Modelling and the
Teleological Approach to Requirements Engineering”, International Journal of Cooperative
Information Systems (IJCIS), pp. 45-79 , 1995.

[Pas01] Oscar Pastor, Jaime Gómez, E. Infrán, V. Pelechano, The OO-Method approach for
information systems modeling: from object-oriented conceptual modeling to automated
prgramming, Information Systems 26, 2001.

[Pas95] Oscar Pastor, Isidro Ramos, OASIS 2.1.1: A Class-Definition Language to Model
Information Systems Using an Object-Oriented Approach, 3rd Edition, Servicio de
Publicaciones, Technical University of Valencia, Spain, 1995.

[San03] J. Sánchez; O. Pastor; H. Estrada; A. Martínez, Semi Automatic Generation of User
Interfaces Prototypes from Early Requirements Models, Perspectives on Requirements
Engineering. Editors: J. Leite; J. Doorn, Kluwer Academic Press, to appear in October 2003.

 [Sch98] Schwabe Daniel and Gustavo Rossi, "An Object Oriented Approach to Web-Based
Application Design", Proceedings of the Theory and Practice of Object Systems, pp 207-
225, New York, 1998.

[Yu95] Yu, Eric, Modelling Strategic Relationships for Process Reengineering, Phd Thesis,
University of Toronto, (1995).

