

 Modeling Organizational Architectural Styles In
UML: The Tropos Case

Carla T. L. L. Silva and Jaelson F. B. Castro

Universidade Federal de Pernambuco - Cin - Recife (PE) – Brasil
Caixa Postal 7851

50732-970 - Recife - PE – Brasil
 { ctlls, jbc} @cin.ufpe.br

Abstract. Today’s software operate in a dynamic, organizational context and
hence, it needs flexible architectures based in social and intentional concepts to
enable software to evolve consistently with its operational environment. The
Tropos requirements oriented development methodology, has defined a number
of organizational architectural styles which are suitable to cooperative, dynamic
and distributed applications. In this paper, we use the UML to describe these
novel architectural styles. In doing so we are able to provide a detailed
representation of both the structure and behaviour of the styles.

1 Introduction

Often, software systems fail to properly support the organizations of which they are an
integral part of. It happens due the lack of proper understanding of the organization by
the software developers of the system, as well as the frequency of organizational
changes which cannot be accommodated by existing software systems (or their
maintainers). In this context, requirement engineering has been recognized as the most
critical phase in systems development, because technical considerations have to be
balanced against social and organizational ones. The Tropos project [1] has been
developing a methodology inspired on organizational concepts, which reduces as
much as possible this impedance mismatch between the system and its environment.
The proposed methodology supersedes traditional development techniques, such as
structured and object-oriented ones in the sense that it is tailored to systems which
operate within an organizational context.

Companies are continually changing and turning their attention to improve their
business strategies. Stakeholders are demanding more flexible and complex systems.
Hence, software has to be based on architectures that can evolve and change
continually to accommodate new components and meet new requirements. Software
architectures describe a software system at a macroscopic level in terms of a
manageable number of subsystems/components/modules interrelated through data and
control dependencies. However, architecture is more than just structure, it includes
rules on how system functionality is achieved across the structure. A flexible
architecture with loosely coupled components is much more likely to accommodate

new feature requirements than one that has been highly optimized for just its initial set
of requirements. Unfortunately, the classical architectural styles [11] and the styles for
e-business applications [12],[13] do not focus on business processes nor on non-
functional requirements of the application. As a result, the organizational structure is
not described nor the conceptual high-level perspective of the application. In this
context, Tropos has defined organizational architectural styles [6],[7],[8] based on
concepts and design alternatives coming from research in organization management,
used to model coordination of business stakeholders – individuals, physical or social
systems. From this perspective, software system is like a social organization of
coordinated autonomous components that interact in order to achieve specific and
possibly common goals. The NFR framework [5] can be used to conduct the selection
of the most suitable organizational architectural style using as criteria the system
desired qualities (NFRs) identified during requirements analysis. Tropos relies on the
i* notation [4] to describe both requirements and organizational architectural styles.
Unfortunately, this notation is not widely accepted by software practitioners, since it is
just beginning to be recognized as a suitable notation for representing requirements
and tool support is also limited. Moreover, it is not able to represent some detailed
information which sometimes is required in architectural design such as set of signals
that are exchanged between architectural components, as well as the valid sequence of
these signals (protocol).

On the other hand, the Unified Modeling Language – UML [3] has been widely
accepted as the industry’s standard language of blueprints for software. As a graphical
language for visualizing, specifying, constructing, and documenting the artifacts of a
software-intensive system, UML has proven itself valuable in helping organizations to
manage the complexity of their systems. UML has also been used to represent the
architecture of simple and complex systems. As an architectural description language,
UML can provide means for representing design decisions. It can lead to architectural
models which describes the high-level design elements of the system and their
connectors, supporting different viewpoints of the system under construction.
Moreover, it is supported by a wide range of tool providers.

In an effort to provide detailed representation in architectural phase of Tropos
methodology, as well as to represent the organizational architectural styles into a
mainstream industrial notation, in this work we propose an extension of UML to
accommodate the concepts and features used for representing organizational
architectures into Tropos. Such an extension is based on UML for Real-Time systems,
which is tuned for real time software systems and is being used for modeling software
architectures. This proposal is an improvement of another attempt for representing the
Tropos concepts in UML [2].

The rest of this paper is organized as follows: section 2 presents the Tropos
methodology. Section 3 describes how software architecture, namely organizational
architectures can be modeled using UML. In section 4, we describe some related
work. Section 5 describes some future work and discusses the contribution of our
work.

Modeling Organizational Architectural Styles in UML: The Tropos Case 163

2 The Tropos Methodology

Tropos proposes a software development methodology and a development framework
which are founded on concepts used to model early requirements and complements
proposals for agent-oriented programming platforms. This methodology is based on
the premise that in order to build software that operates within a dynamic
environment, one needs to analyze and model explicitly that environment in terms of
“actors” , their goals and dependencies on other actors. Tropos supports five phases of
software development: Early Requirements, Late Requirements, Architectural Design,
Detailed Design and Implementation.

Early requirements analysis focuses on the intentions of stakeholders. These
intentions are modeled as goals, which through some form of a goal-oriented analysis,
eventually lead to the functional and non-functional requirements of the system-to-be
[14]. Late requirements analysis results in a requirements specification, which describes
all functional and non-functional requirements for the system-to-be. In Tropos, the
information system is represented as one or more actors, along with other actors from the
system’s operational environment. In other words, the system comes into the picture as
one or more actors who contribute to the fulfillment of stakeholder goals. Both the
process to detect the relevant stakeholders and their goals as well as the method to
conduct the transition among Tropos models are out of scope of this paper. For further
details about Tropos, see [1].

A system architecture constitutes a relatively small, intellectually manageable
model of system structure, which describes how system components work together.
Unfortunately, traditional architectural styles for e-business applications [12],[13]
focus on web concepts, protocols and underlying technologies but not on business
processes nor non functional requirements of the application. As a result, the
organizational architecture styles are not described nor the conceptual high-level
perspective of the e-business application.

Tropos has defined organizational architectural styles [6],[7],[8] for agent,
cooperative, dynamic and distributed applications to guide the design of the system
architecture. These architectural styles (pyramid, joint venture (Fig. 1), structure in 5,
takeover, arm’s length, vertical integration, co-optation, bidding, …) are based on
concepts and design alternatives coming from research on organization management.

For example, the joint venture architectural style (Fig. 1) allows a decentralized
architecture. The main feature of this style is that it involves an agreement between
two or more principal partners/components in order to obtain the benefits derived
from operating at a large scale, such as partial investment and lower maintenance
costs, as well as reusing the experience and knowledge of the partners/components,
since they pursue joint objectives.

To support modeling and analysis during the initial phases, Tropos adopts the
concepts offered by i* [3], a modeling framework offering concepts such as actor
(actors can be agents, positions or roles), as well as social dependencies among
actors, including goal, softgoal, task and resource dependencies. This means that both
the system’s environment and the system itself are seen as organizations of actors,
each having goals to be fulfilled and each relying on other actors to help them with
goal fulfillment.

164 WER 2002

Fig. 1. Joint Venture

As shown in Fig. 1, actors are represented as circles; dependums -- goals, softgoals,
tasks and resources -- are respectively represented as ovals, clouds, hexagons and
rectangles; and dependencies have the form depender � dependum� dependee. Hence,
in Tropos we have the following concepts:
− Actor: An actor is an active entity that carries out actions to achieve goals by

exercising its know-how.
− Dependency: A dependency describes an intentional relationship between two

actors, i.e., an “agreement” (called dependum) between two actors: the depender
and the dependee, where one actor (depender) depends on another actor (dependee)
on something (dependum).

− Depender: The depender is the depending actor.
− Dependee: The dependee is the actor who is depended upon.
− Dependum: The dependum is the type of the dependency and describes the nature

of the agreement.
− Goal: A goal is a condition or state of affairs in the world that the stakeholders

would like to achieve. How the goal is to be achieved is not specified, allowing
alternatives to be considered. Goal dependencies are used to represent delegation
of responsibility for fulfilling a goal.

− Softgoal: A softgoal is a condition or state of affairs in the world that the actor
would like to achieve, but unlike in the concept of (hard) goal, there are no clear-
cut criteria for whether the condition is achieved, and it is up to subjective
judgment and interpretation of the developer to judge whether a particular state of
affairs in fact achieves sufficiently the stated softgoal. Softgoal dependencies are

Modeling Organizational Architectural Styles in UML: The Tropos Case 165

similar to goal dependencies, but their fulfillment cannot be defined precisely (for
instance, the appreciation is subjective, or the fulfillment can occur only to a given
extent).

− Resource: A resource is an (physical or informational) entity, with which the main
concern is whether it is available. Resource dependencies require the dependee to
provide a resource to the depender.

− Task: A task specifies a particular way of doing something. Tasks can also be seen
as the solutions in the target system, which will satisfy the softgoals
(operationalizations). These solutions provide operations, processes, data
representations, structuring, constraints and agents in the target system to meet the
needs stated in the goals and softgoals. Task dependencies are used in situations
where the dependee is required to perform a given activity.

The first task during architectural design is to select among alternative architectural

styles using as criteria the desired qualities identified in the previous phase (Late
Requirements). They will guide the selection process of the appropriate architectural
style. More details about the selection and non-functional requirements decomposition
process can be found in [6],[7]. A further step in the architectural design consists in
defining how the goals assigned to each actor are fulfilled by agents with respect to
social patterns. Further details about social patterns can be found in [1].

The detailed design phase is intended to introduce additional details for each
architectural component of a system. In our case, this includes actor communication
and actor behavior. To support this phase, we can propose to adopt extensions to
UML [2], like AUML, the Agent Unified Modeling Language [16],[17] proposed by
the FIPA (Foundation for Physical Intelligent Agents) [15] and the OMG Agent Work
group. Tropos also includes techniques for generating an implementation from a
detailed design. For further details about these phases of Tropos methodology, see [1].

In the next section, we show how architectural design can be represented by using
an extension of UML. We expose our proposal for representing architectural design in
the Tropos methodology using this extension of UML.

3 Modeling Organizational Architectural Styles In UML

Powerful extensibility mechanisms of UML enables us to represent new concepts in
UML and a number of views are captured and sufficiently represented through the use
of the UML meta-model. In this section we show how architectural constructs could
be derived from more general UML concepts by using these mechanisms and also
describe how the concepts and features used for representing organizational
architectures into Tropos are captured and rendered using these constructs.

3.1 Architectural Representation in UM L

The UMLRT [9],[10] is using UML as an architectural modeling language. Some
specific architectural modeling concepts are defined as specializations of generic

166 WER 2002

UML concepts. This allows us to take advantage of the notation that is widely
recognized by software practitioners. These specializations, usually expressed as
stereotypes, conform to the generic semantics of the corresponding UML concepts,
but provide additional semantics specified by constraints [9]:
− Capsules: A capsule is a stereotype of the UML class concept with some specific

features. A capsule uses its ports for all interactions with its environment. The
communication with others capsule is done by one or more ports. The
interconnection with other capsules is via connectors using signals. A capsule is a
specialized active class and is used for modeling a self contained component of a
system. For instance, a capsule may be used to capture an entire subsystem, or even
a complete system.

− Ports: A port represents an interaction point between a capsule and its environment.
They convey signals between the environment and the capsule. The type of signals
and the order in which they may appear is defined by the protocol associated with
the port. The port notation is shown as a small hollow square symbol. If the port
symbol is placed overlapping the boundary of the rectangle symbol denotes a
public visibility. If the port is shown inside the rectangle symbol, then the port is
hidden and its visibility is private. When viewed from within the capsule, ports can
be of two kinds: relay ports and end ports. Relay ports are ports that simply pass all
signals through and end ports are the ultimate sources and sinks of all signals sent
by capsules. These signals are generated by the state machines of capsules (Fig. 8).

− Protocols: A protocol specifies a set of valid behaviors (signal exchanges) between
two or more collaborating capsules. However, to make such a dynamic pattern
reusable, protocols are decoupled from a particular context of collaborating
capsules and are defined instead in terms of abstract entities called protocol roles
(stereotype of Classifier Role in UML) (Fig. 9).

− Connectors: A connector is an abstraction of a message-passing channel that
connects two or more ports. Each connector is typed by a protocol that defines the
possible interactions that can take place across that connector (Fig. 8).

3.2 Organizational Architectural Styles In UM L

The organizational styles are generic structures defined at a metalevel that can be
instantiated to design a specific application architecture. They support non-functional
requirements, represented in Tropos methodology such as softgoals, during
architectural design phase. Unlike functional requirements which define what a
software is expected to do, non-functional requirements specify global constraints on
how the software operates or how the functionality is exhibited. NFRs are as important
as the functional ones. They are not simply desired quality properties, but critical
aspects of dynamic systems without which the applications cannot work and evolve
properly. The need to treat non-functional properties explicitly is a critical issue when
software architecture is built. Organizational architectures integrate NFR with
architectural project, since NFRs are composing part of these styles.

Interested in adjusting the semantic gap between software architecture and
requirements model from which it is derived, Tropos relies on the i* notation [4] to

Modeling Organizational Architectural Styles in UML: The Tropos Case 167

describe both requirements and represent organizational architectural styles.
Unfortunately, this notation is not widely accepted by software practitioners, since it is
just beginning to be recognized as a suitable notation for representing requirements
and its tool support is also limited. On the other hand, the Unified Modeling
Language- UML [3] has been used to represent the architecture of simple and
complex systems. Using UML as an Architecture Design Language in the Tropos
methodology allow us for representing detailed information which sometimes is
required in architectural design, such as set of signals that are exchanged between
architectural components, which are not supported by the i* notation. In the sequel we
explain how the concepts of Tropos can be accommodated within UML-RT, in order
to represent organizational architectures in UML.

As explained in section 2.1, in Tropos actors are active entities that carries out
actions to achieve goals by exercising their know-how. In section 3.1, we explained
that in UML Real-Time, capsules are specialized active classes used for modeling self
contained components of a system. Hence, an actor in Tropos is mapped to a capsule
in UML-RT (Fig. 2). Note that ports are physical parts of the implementation of a
capsule that mediate the interaction of the capsule with the outside world.

Fig. 2. Mapping a dependency between actors to UML

In Tropos a dependency describes an “agreement” (called dependum) between two
actors playing the roles of depender and dependee, respectively. The depender is the
depending actor, and the dependee, the actor who is depended upon. Dependencies
have the form depender � dependum� dependee. In UML-RT, a protocol is an
explicit specification of the contractual agreement between its participants, which
plays specific roles in the protocol. In other words, a protocol captures the contractual
obligations that exist between capsules. Hence, a dependum is mapped to a protocol
and the roles of depender and dependee are mapped to protocol roles that are
comprised by the protocol (Fig. 2).

The type of the dependency between two actors (called dependum) describes the
nature of the agreement. Tropos defines four types of dependums: goals, softgoals,
tasks and resources. Each type of dependum will define different features in the
protocol and therefore in ports that realizes its protocol roles.

As noted earlier, protocols are defined in terms of entities called protocol roles.
Since protocol roles are abstract classes and ports play a specific role in some

 Dependum

Depender Dependee

168 WER 2002

protocol, a protocol role defines the type of a port, which simply means that the port
implements the behavior specified by that protocol role. As defined earlier, capsules
are complex, physical, possibly distributed architectural objects that interact with their
surroundings through ports. Note that a port is both a composite part of the structure
of the capsule and a constraint on its behavior.

Fig. 3. Mapping a goal dependency to UML

Goal type will be mapped to an attribute with boolean type present into the port
that realizes the protocolRole dependee (Fig. 3). It represents a goal that a capsule is
responsible for fulfill by exchanging the signals defined in the protocolRole dependee.

Softgoal type is mapped to an attribute with enumerated type present into the port

that realizes the protocolRole dependee (Fig. 4). It represents a quality goal that a
capsule is responsible for fulfill to a given extent by exchanging the signals defined in
the protocolRole dependee.

Fig. 4. Mapping a softgoal dependency to UML

Modeling Organizational Architectural Styles in UML: The Tropos Case 169

Fig. 5. Mapping a resource dependency to UML

Resource type is mapped to the return type of an abstract method placed on
protocolRole dependee that will be realized by a port of a capsule (Fig. 5). This return
type represents a resource that a capsule is required to provide by exchanging signals
defined in the protocolRole dependee.

Fig. 6. Mapping a task dependency to UML

Task type is mapped to an abstract method placed on protocolRole dependee that
will be realized by a port of a capsule (Fig. 6). It represents an activity that a capsule
is required to perform by exchanging signals defined in the protocolRole dependee.

A more compact form for describing capsules is illustrated in Fig. 7, where the
ports of a capsule are listed in a special labeled list. The protocol role (type) of a port
is normally identified by a pathname since protocol role names are unique only within
the scope of a given protocol. However, ports are also depicted in the collaboration
diagrams (Fig. 8) that describe the internal decomposition of a capsule. In these
diagrams, ports are represented by the appropriate classifier roles, i.e., the port roles.
To reduce visual clutter, port roles are generally shown in iconified form. For the case

170 WER 2002

of binary protocols, an additional stereotype icon can be used: the port playing the
conjugate role (depender role) is indicated by a white-filled (versus black-filled)
square. In that case, the protocol name and the tilde suffix are sufficient to identify the
protocol role as the conjugate role; the protocol role name is redundant and should be
omitted. Similarly, the use of the protocol name alone on a black square indicates the
base role (dependee role) of the protocol. In Fig. 8, we can see the details of (inside)
the capsule and the end port/relay port distinction is indicated graphically.

CapsuleA

<<port>> Port1 : Protocol::Depender

<<capsule>>
CapsuleB

<<port>> Port2 : Protocol: :Dependee

<<capsule>>

Fig. 7. A capsule class diagram

In UML-RT, each connector is typed by a protocol that specifies the desired
behavior that can take place over that connector. A key feature of connectors is that
they can only interconnect ports that play complementary roles in the protocol
associated with the connector. In a class diagram, a connector is modeled by an
association while in a capsule collaboration diagram it is declared through an
association role. Hence, a dependency (depender � dependum� dependee) in Tropos
is mapped to a connector in UML-RT (Fig. 7 and Fig. 8).

In the sequel we show how the Joint Venture organizational architectural style is
modeled using UML-RT.

3.3 Joint Venture In UM L

The UML notation of capsules, ports and connectors is used to model the architectural
actors and their dependencies. In Fig. 8, each capsule is representing an actor of the
joint venture architecture. When an actor is a dependee of some dependency, its
corresponding capsule has an implementation port (end port) for each dependency (ex.
Port1), which is used to provide services for others capsules. When an actor is a
depender of some dependency, its corresponding capsule has an implementation port
(relay port) to exchange messages (ex. Port3).

This architecture presents six capsules disposed according to Fig. 8:
− The capsule Joint Management is responsible for ensuring the strategic operation

and coordination of such a system and its partner capsules on a global dimension.
Through the delegation of authority it coordinates tasks and manages sharing of
knowledge and resources.

− The two secondary partners are capsules responsible for supplying services or for
supporting tasks for the organization core.

− The three principal partners are capsules responsible for managing and controlling
themselves on a local dimension. They can interact directly with other principal
partners to exchange, provide and receive services, data and knowledge.

Modeling Organizational Architectural Styles in UML: The Tropos Case 171

Fig. 8. Joint Venture Style in UML-RT’s capsule collaboration diagram

From Fig. 1 you can recall the goal dependency Authority Delegation between
Principal Partner_n and Joint Management actors. Each actor present in Fig. 1 is
mapped to a capsule in Fig. 8. Each dependum, i.e., the “agreement” between these
two actors is mapped to the protocol in Fig. 9. A protocol is an explicit specification
of the contractual agreement between the participants in the protocol. In our study
these participants are the two actors previously mapped to capsules. Each dependency
is mapped to a connector in Fig. 8. Each connector is typed by the protocol that
represents the dependum of its corresponding dependency. The type of the
dependency describes the nature of the agreement, i.e., the connector type describes
the nature of the protocol. The four types of dependums (Goal, Softgoal, Task and
Resource) are mapped to four types of protocols (Figures 9, 10, 11 and 12). For
example, in the Goal type, the protocol Authority Delegation (Fig. 9) assures that this
goal will be fulfilled by using the signals described in the protocolRole dependee. The
goal will be mapped to a boolean attribute present in the port that implements the
protocolRole dependee. This attribute will be true if the goal has been fulfilled and
false otherwise. Hence, in the dependency between Principal Partner_n and Joint
Management capsules depicted in the second doted area of Fig. 8, the goal
dependency will be mapped to a boolean attribute located in the port which composes
the capsule Principal Partner_n and implements the protocolRole dependee of the
protocol that assures the fulfillment of this goal (Fig. 9).

172 WER 2002

Fig. 9. Protocols and Ports representing the Joint Venture’s goal dependency Authority
Delegation

Now examine the softgoal dependency Added Value between Principal Partner_2
and Joint Management actors depicted in Fig. 1. In this case, the protocol Added
Value (Fig. 10) assures that this softgoal will be satisfied in some extent by using the
signals described in the protocolRole dependee. The softgoal will be mapped to a
enumerated attribute present in the port that implements the protocolRole dependee.
This attribute will represent different degrees of softgoal fulfillment. Hence, in the
dependency between Principal Partner_2 and Joint Management capsules depicted
in the third doted area of Fig. 8, the softgoal dependency will be mapped to a
enumerated attribute located in the port which composes the Joint Management
capsule and implements the protocolRole dependee of the protocol that assures some
degree of fulfillment of this softgoal (Fig. 10).

Fig. 10. Protocols and Ports representing the Joint Venture’s softgoal dependency Added
Value

In the sequence, look at the task dependency Coordination between Principal
Partner_1 and Joint Management actors depicted in the Fig. 1. Here, the protocol
Coordination (Fig. 11) assures that this task will be performed by using the signals
described in the protocolRole dependee. The task itself will be mapped to a
<<incoming>> signal in the protocolRole dependee and the port that implements that
protocolRole will be committed to realize their signals. Hence, in the dependency
between Principal Partner_1 and Joint Management capsules depicted in the first
doted area of Fig. 8, the task dependency will be mapped to a << incoming>> signal
placed in the protocolRole dependee of the protocol that assures the performing of this
task. The Joint Management capsule is composed by a port which implements this
protocolRole dependee (Fig. 11).

Finally we have the resource dependency Resource Exchange between Principal

Partner_2 and Principal Partner_n depicted in the Fig. 1. Again, the protocol
Resource Exchange (Fig. 12) assures that this resource will be provided by using the

Fig. 11. Protocols and Ports representing the Joint Venture’s task dependency Coordination

Modeling Organizational Architectural Styles in UML: The Tropos Case 173

signals described as <<incoming>> signals in the protocolRole dependee. The
resource will be mapped to a <<incoming>> signal that returns an information of type
resource in the protocolRole dependee and the port that implements that protocolRole
will be committed to realize their signals. Hence, in the dependency between
Principal Partner_2 and Principal Partner_n capsules depicted in the fourth doted
area of Fig. 8, the resource dependency will be mapped to an <<incoming>> signal
that returns an information of type resource and is placed in the protocolRole
dependee of the protocol that assures the providing of this resource. The Principal
Partner_2 capsule is composed by a port which implements this protocolRole
dependee (Fig. 12).

Fig. 12. Protocols and Ports representing the Joint Venture’s resource dependency Resource
Exchange

Although we have only detailed the mapping of four dependencies in the Joint
Venture Style to their respective representation in UML-RT, the remaining ones are
mapped analogously, according to their types.

4 Related Work

Organizational architectural styles have been applied in Agent Oriented Software
Engineering. Sociological concepts have always been a source of inspiration for multi-
agent research, and recently the agent community has been returning the favor by
exploring the potential of agent-based models for studying sociological phenomena.
The result of this interaction has been the formalization of a number of sociological
and psychological concepts with important applications in engineering agent systems,
concepts that are not directly supported in UML. Hence, Parunak [18] addresses an
area of agent functionality that goes beyond the capabilities of current UML and
presents a number of concepts, including “group” , “ role” , “dependency,” and “speech
acts,” into a coherent syntax for describing organizational structures, and proposes
UML conventions and AUML extensions [16],[17] to support their use in the analysis,
specification, and design of multi-agent systems. In the case of social structures,
insights from AALAADIN [19], dependency theory, and holonics can be fused into a
single metamodel of groups as composed of agents occupying roles (defined as
patterns of dependency and interaction) in an environment. This approach is also
behavioristic, since it defines roles in terms of features that are accessible to an
outside observer, rather than those available only to introspection by the agent.

174 WER 2002

5 Conclusions and Future Work

By recognizing the use of Unified Modeling Language (UML) as an architectural
description language and aiming to make organizational architectural styles widely
used in industry as well as include a more detailed representation in architectural
design phase of Tropos methodology, this paper proposed a set of UML extensions for
representing organizational architectural styles based on UML for Real-Time systems.
Using these architectural styles allow us for building a flexible architecture, with
loosely coupled components, which can evolve and change continually to
accommodate new feature requirements. Hence, it enables to realize stakeholders’
demand for more flexible and complex systems. Moreover, using organizational
architectural styles in UML allow us for representing detailed information such as the
communication signals exchanged by the components which compose the architecture.
Currently, this additional feature isn’ t available in architectural design phase of
Tropos methodology because it uses the i* notation in this phase. In Tropos, UML is
used only in detailed design phase. As further advantages in using UML also for
modeling architecture in Tropos, we can underline [20]:
− Common Model Representation: Modeling information of different types of views

(UML and non-UML) can be physically stored in the same repository.
− Reduced Toolset for Model Manipulation: Being able to use UML elements to

represent non-UML artifacts enables us to use existing UML toolsets to create
those views.

− Unified Way of Cross-Referencing Model Information: Having modeling
information stored at one physical location further enables us to cross-reference
that information. Cross-referencing is useful for maintaining the traceability among
artifacts from architectural design and detailed design phases in Tropos.

To improve this proposal, future work would include creating a catalogue for

organizational architectures in UML, extending UML for representing social patterns
involving agents, as well as for representing agents itself, in the context of Tropos
methodology.

References

1. Castro, J., Kolp, M., Mylopoulos, J.: Towards Requirements-Driven Information Systems
Engineering: The Tropos Project. In Information Systems, Vol. 27. Elsevier, Amsterdam,
The Netherlands (2002) 365–389

2. Mylopoulos, J., Kolp, M., Castro, J.: UML for Agent-Oriented Software Development: the
Tropos Proposal. In Proceedings of the Fourth International Conference on the Unified
Modeling Language (<<UML>> 2001). Toronto, Canada (2001)

3. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language – Reference
Manual. Addison Wesley (1999)

4. Yu., E.: Modelling Strategic Relationships for Process Reengineering. Ph.D. thesis,
Department of Computer Science, University of Toronto, Canada (1995)

Modeling Organizational Architectural Styles in UML: The Tropos Case 175

5. Chung, L., Nixon, B. A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Publishing (2000)

6. Kolp, M., Castro, J., Mylopoulos, J.: A social organization perspective on software
architectures. In Proc. of the 1st Int. Workshop From Software Requirements to
Architectures. STRAW’01, Toronto, Canada (2001) 5–12

7. Kolp, M., Giorgini, P., Mylopoulos, J.: A goal-based organizational perspective on multi-
agents architectures. In Proc. of the 8th Int. Workshop on Intelligent Agents: Agent
Theories, Architectures, and Languages. ATAL’01, Seattle, USA (2001)

8. Kolp, M., Mylopoulos, J.: Software architectures as organizational structures. In Proc.
ASERC Workshop on ”The Role of Software Architectures in the Construction, Evolution,
and Reuse of Software Systems”, Edmonton, Canada (2001)

9. Selic, B., Rumbaugh, J.: Using UML for Modeling Complex Real-Time Systems. Rational
Whitepaper (www.rational.com) (1998)

10. OMG: Unified Modeling Language 2.0. Initial submission to OMG RFP ad/00-09-01
(UML 2.0 Infrastructure RFP) and ad/00-09-02 (UML 2.0 Superstructure RFP).: Proposal
version 0.63 (draft). http://www.omg.org/.

11. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Upper Saddle River, N.J., Prentice Hall (1996)

12. Conallen, J.: Building Web Applications with UML. Addison-Wesley (2000)
13. IBM: Patterns for e-business. At http://www.ibm.com/developerworks/patterns (2001)
14. Dardenne, A., Lamsweerde, A.V., Fickas, S.: Goal-directed requirements acquisition.

Science of Computer Programming, Vol. 20 (1993) 3–50
15. FIPA: The Foundation for Intelligent Physical Agents. At http://www.fipa.org (2001)
16. Odell, J., Parunak, H.V.D., Bauer, B.: Extending UML for agents. In Proc. of the 2nd Int.

Bi-Conference Workshop on Agent-Oriented Information Systems. AOIS’00, Austin, USA
(2000) 3–17

17. Bauer, B., Muller, J., Odell., J.: Agent UML: A formalism for specifying multiagent
interaction. In Proc. of the 1st Int. Workshop on Agent-Oriented Software Engineering.
AOSE’00, Limerick, Ireland (2001) 91–104

18. Parunak, H.V.D., Odell., J.: Representing Social Structures in UML. Proc. of the Agent-
Oriented Software Engineering Workshop. Agents 2001 Conference, Montreal, Canada
(2001)

19. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in
multi-agent systems. In Proceedings of Third International Conference on Multi-Agent
Systems. ICMAS'98, IEEE Computer Society (1998) 128-135

20. Medvidovic, N., Rosenblum, D.S., Robbins, J.E., Redmiles D.F.: Modeling Software
Architectures in the Unified Modeling Language. Computer Science Department, University
of Southern California, Los Angeles (2000)

176 WER 2002

