
Support for Structuring Mechanism in the Integration
of Organizational Requirements and Object Oriented

Modeling

Fernanda M. R. Alencar1, Gilberto A. A. Cysneiros Filho2, Jaelson F. B. Castro2

1Universidade Federal de Pernambuco, Departamento de Eletrônica e Sistemas, Recife,
Brazil

fmra@ufpe.br
2Universidade Federal de Pernambuco, Centro de Informática, Recife, Brazil

{gaacf, jbc}@cin.ufpe.br

Abstract. The success of computer applications depends on a good
understanding of the organizational environment. Requirement modeling
techniques may be used to help to understand the organizational process. In
recent years, we have observed a growing influence of the object-orientation
paradigm. Unfortunately the dominant technique of object oriented modeling
UML (Unified Modeling Language) is ill equipped to represent the
organizational requirements. We advocate the use of the i* technique to model
organizational requirements in terms of the organizational relationships among
the several organizational actors, as well as a means for understanding the
rationale for the decision-making. In this paper we discuss some improved
guidelines for the integration of early and late requirements specifications. We
also present a prototype tool (GOOD - Goal Object Oriented Development)
which support the mapping of i* organizational models stored in a Telos
repository by the OME tool into UML elements modeled by the Rational Rose
tool.

1 Introduction

A good Requirements Engineering effort is paramount to the success of any kind of
system. Often, systems fail to properly support the organizations of which they are an
integral part. Primary reasons for such failures are the lack of proper understanding of
the organization by the developers of the system, also the frequency of organizational
changes, which cannot be accommodated by existing systems (or their maintainers).
Requirements capture has been acknowledged as a critical phase of software
development, today in all of kind of systems, precisely because it is the phase which
deals not only with technical knowledge, but also with organizational, managerial,
economic and social issues. The emerging consensus is that a requirement
specification should include not only software specifications but also business models
and other kinds of information describing the context in which the intended system
will function [1] to achieve successful development of high quality products.
However, the production of high quality specifications is not easy. Usually the

mailto:fmra@ufpe.br
mailto:jbc%7D@cin.ufpe.br

customers do not exactly know what they want and sometimes the requirements may
not reflect the real needs of the customers. It is common for requirements to be
incomplete and/or inconsistent.

At the early phase [2] requirements activities are typically informal and address
organizational or non-functional requirements. At the late phase requirements
activities usually focus on completeness, consistency, and automated verification of
requirements.

The Unified Modeling Language [3] is well suited for late-phase requirements
capture. It facilitates the production of a requirement document, to be passed on to
developers, so that the resulting system would be adequately specified and
constrained in a contractual setting. However, UML is ill equipped for early
requirements capture because it can not represent how the intended system meets
organizational goals, why the system is needed, what alternatives were considered,
what the implication of the alternatives are for the various stakeholders, and how the
stakeholders’ interests and concerns might be addressed. What is required to capture
such concerns is a framework that focuses on the description and evaluation of
alternatives and their relationship to the organizational objectives behind the software
development project [4]. We argue that the i* framework [2], is well suited for early-
phase requirements capture, since it provides for the representation of alternatives,
and offers primitive modeling concepts such as those of softgoal and goal.

Hence, our contention is that UML alone is not adequate to deal with all different
types of analysis and reasoning that are required during the requirements capture
phases. Instead, we advocate the use of two complementary modeling techniques, i*
and UML.

The goal of this paper is to improve the mapping rules presented in [13], to cope
with structuring mechanisms supported by the i* technique, namely agents, roles and
positions. Therefore, we propose rules to treat these sub-units and their relationships.
Hence, we present the transition from informal descriptions of actors and theirs sub-
units in i* to precise requirements in pUML. This constitutes a conceptualization
activity within which a developer might make use of domain knowledge partly
expressed in descriptions of the organization, and partly in existing requirements
specifications.

This rest of this paper is organized as follows. Section 2 introduces the language
used for the early requirements description, namely the i* technique. In section 3, we
provide some means for transforming the sub-units of a complex actor in i* models
into precise specifications in pUML/OCL. Section 4 describes late requirements of
the SmartCD taking for base the early requirements captured in the previous section.
In Section 5 we introduce tools used to support i*, UML and the mapping, namely the
GOOD tool. Section 6 describes some related work, while section 7 concludes the
paper with a summary of its contributions. Throughout the paper, a small CD store
example is used.

148 WER 2002

2 The i* Modeling Framework

The i* technique [2] provide understanding of the organizational environment and
goals. The i* offers a modeling framework that focuses on strategic actor
relationships. The term actor was used to refer generically to any unit to which
intentional dependencies could be ascribed. An intentional actor does not simply carry
out activities and produce entities, but has motivations, intents, and rationales behind
its actions [2]. An actor is strategic when it is not merely focused on meeting its
immediate goal, but is concerned about longer-term implications of its structural
relationships with other actors. Usually, when we try to understand an organization,
the information captured by standard modeling techniques (DFD, ER, Statechart, etc.)
focuses on entities, functions, data flows, states and the like. They are not capable of
expressing the reasons (the “why’s”) of the process (motivations, intentions and
rationales). The ontology of i* [2] caters to some of these more advanced concepts.
The participants of the organizational setting are actors with intentional properties,
such as, goals, beliefs, abilities and compromises. These actors depend upon each
other in order to fulfill their objectives and have their tasks performed. We can model
the internal structure of an actor grouping and categorizing dependencies as belonging
to sub-units of this actor. Therefore, a finer grouping of dependencies would help
identify more precisely how one dependency might lead to other dependencies. The i*
technique offers two models: The Strategic Dependency (SD) model, and the
Strategic Rationale (SR) model.

2.1 The Strategic Dependency Model

This model focuses on the intentional relationships among organizational actors. It
consists of a set of nodes and links connecting them, where nodes represent actors and
each link indicates a dependency between two actors. The depending actor is called
depender, and the actor who is depended upon is called the dependee. Hence, an SD
model consists of a network of dependency relationships among various actors,
capturing the motivation and the rationale of activities. i* distinguishes four types of
dependencies. Three of these related to existing intentions – goal dependency,
resource dependency and task dependency, while the fourth is associated with the
notion of non-functional requirements, the so-called softgoal dependency. In a goal
dependency, an agent depends on another to fulfill a goal, without worrying how this
goal will be achieved. In a resource dependency, an agent depends on another agent
to provide a physical resource or information. In a task dependency, an agent depends
on another to carry out a task. A softgoal dependency is similar to a goal dependency,
except that a softgoal is not precisely defined. In i* we can also model different
degrees of dependency commitment on the part of the relevant actors (open,
committed, or critical). To model the sub-units of a complex actor, we can also
classify actors into three types of sub-units - agents, roles, and positions – each of
which is an actor in more specialized sense.

An agent is an actor with concrete physical manifestations (a person or a system).
An agent has dependencies that apply regardless of what roles he/ she/it happens to be

Support for Structuring Mechanism in the Integration of Organizational Requirements 149

playing. These characteristics are not easily transferable to other individuals. The
actor has skills, experiences, and its physical limitations. An actor plays a role.

A role is an abstract characterization of the behavior of an actor within some
specialized context, domain or endeavor. Its characteristics are easily transferable to
other actors. Dependencies are associated with a role when these dependencies apply
regardless of who plays the role.

A position is intermediate in abstraction between a role and an agent. It is a set of
roles typically played by one agent. We can say that an agent occupies a position and
that a position covers a role.

Finally, i* supports the analysis of opportunities and vulnerabilities for different
actors [2].

Suppose a situation in which a Client wishes to buy CDs and goes to a specialized
store because its services are of good quality and it claims to have most (if not all)
available titles on stock. If a client cannot find his/hers preferred title, the shop can
happily place an order for it and notify the client upon its arrival. The shop has
decided to improve its services by commissioning a new software system (SmartCD)
to handle orders as well as providing an online catalogue (it would be so convenient!).
In the figure 1, we have the Strategic Dependency (SD) model of the CD store case
study.

Fig. 1. Strategic Dependency Model

At this early stage of requirements capture we have identified three positions:

Client, Management Store and SmartCD. This last actor corresponds to the system to
be developed, handling orders, notifications of CD arrivals and providing the online
catalogue. The dependencies between the Client and the Management Store position
(actor) can be find in figure1. The Client depends on the Management Store for
getting the CD (resource dependency). However, he/she wishes the services to be of
good quality (softgoal Quality[Service]) and the store to maintain a good stock of
CDs (softgoal Good variety). Of course these goals are not yet precisely defined at
this early stage, hence the use of softgoals. The Manager Store agent Turning to the

150 WER 2002

relationship between actors Client and SmartCD, we notice that one of the goals for
introducing the online system is to enable browsing facilities (goal dependency
Browse Catalogue). In fact, the store may stock thousands of CDs, making it difficult
(or even impossible) for a customer to manually search all of them. In the (unlikely)
situation that a CD is not on stock, the SmartCD actor will be able to handle orders
online (the system will inform what and how it should be done, hence task
dependency Order new CD). This feature is much awaited, since filling orders
manually (through a sales person) is time consuming. Of course, when the (ordered)
CD arrives, the Client will be notified as soon as possible (actually there is a pre-
defined procedure for dealing with it, hence the task dependency Notify CD Arrival).
Last but not least, the Management Store actor also has some expectations on the
commissioned SmartCD system. It expects the access to be fast (softgoal
Fast[Access]) and to use it to keep the stock updated (task Update Stock).

In figure 2, we concentrated our specification on the SmartCD actor. As we can
see, we find the five types of relationship – occupies, covers, play, is-Part-of and is-a.
The first is respectively between an agent - SystemControl - and a position -
SmartCD. The second one is among a position – InternetSales - and a set of roles -
CD_Reserve and CD_Delivery. The third is between an agent – Office_Boy - and a
role - CD_Delivery. Roles, positions, and agents can each have subparts. It is
expressed by the fourth relationship “IS-PART-OF” construct. Thus, the position
SmartCD consists of InternetSales, Inventory, and Financial. The fifth relationship,
IS-A construct represents a conceptual generalization/specialization among agents,
positions or roles. This construct is not described in figure 2.

Fig. 2. SmartCD Strategic Dependency Model

There can be dependencies among the agents, positions, and roles. The Internet

Sales position depends on the Financial position to process the payment of the CDs
bought by some Client. This dependency is expressed by the task dependency
“Process Payment”. In the same way, the Internet Sales agent depends on the
Inventory agent to have the reports of the availability of products in stock (the task
dependency “Report on Stock”). The Financial position depends on the Internet Sales
position to inform the data of the sales, for example, Client’s data, the purchase value,

Support for Structuring Mechanism in the Integration of Organizational Requirements 151

payment form, delivery local, amount and type of product sold. This dependency is
expressed by the task dependency “Report on Sales”. The Financial position also
depends on the agent Inventory to inform update information of the available products
in the stock (the task dependency “Update Stock”). Finally, the Inventory position
depends on the Internet Sales position to request information on the Store’s stock of
products (the task dependency “Process Query”).

2.2 The Strategic Rational Model

The Strategic Rationale Model (SR) provides a more detailed level of modeling by
looking “inside” actors to model internal intentional relationships. It is used to: (i)
describe the interests, concerns and motivations of participants process; (ii) enable the
assessment of the possible alternatives in the definition of the process; and (iii)
research in more detail the existing reasons behind the dependencies between the
various actors. Nodes and links also compose this model. It includes the previous four
types of nodes (present in the SD model): goal, task, resource and soft-goal.
However, two new types of relationship are incorporated: means-end that suggests
that there could be other means of achieving the objective (alternatives) and task-
decomposition that describes what should be done in order to perform a certain task.

In figure 3 we use de SR notation to detail the InternetSales actor. Due to space
limitation we now only comment some aspects. An interested reader can find a fuller
description of the approach in [13].

The store is interested in attracting (new and old) clients. In the InternetSales
module several strategic decisions were taken in consideration and as a result the task
Interact by Site was decomposed into three aspects (expressed by a task-
decomposition link):

To define standard procedures to insert the user data on the system (captured
by the sub-task RegisterClient);
To define standard procedures for assist the Client on his/her necessity;
To meet the objective of have the CD wanted (captured by the sub-goal
SearchCD): two alternatives are considered for meeting this objective: to
execute the procedures for the fast search of items (sub-task FastSearch) or
to execute the procedures for super search of items (sub-task SuperSearch).

At this point, we may stop the process of modeling the strategic dependencies of
the CD store. We are already capable of understanding some issues of the application
domain (the enterprise). We can then move to provide a detailed system specification.

3 Mapping Early Requirements into Late Requirements

Late requirements focus on the functional and non-functional requirements of a
system-to-be, which will support the chosen alternative among those considered
during early requirements. To specify the late requirements, we adopt pUML (precise
UML) [5], which provides a precise denotational semantics for core UML elements,
such as: relationship, classifier, association, and generalization.

152 WER 2002

Fig. 3. Strategic Rationale Model of the SmartCD

The pUML diagrams alone are not sufficient for late requirement capture because
it does not provide for the specification of constraints, such as invariants,
preconditions and the like. For this task, we have adopted the Object Constraint
Language (OCL) [6]. OCL is a textual language, also part of the Object Management
standard, that can precisely describe constraints for object oriented models.

The transformation of i*-based early requirements into pUML/OCL-based late
requirements is founded on six guidelines which deal respectively with actors, tasks,
resources, goals/softgoals, task decompositions and means-ends relationships [13].

A meta model to specify the mapping rules more exactly is being considered in
works that are being developed in our group.
 The work consist in extend the guideline G1 related with the mapping of i* actors
to pUML classes proposed in [13].

The new guidelines will be denoted by G’. Recall from section 2.1 that i* actors
can also be classified into three types of sub-units - agents, roles, and positions – each
of which is an actor in more specialized sense. We propose a new set of six sub-
guidelines that complement the original set described in [13]. From the i* models
(figure 1 and 2) and with the enhanced guidelines we are able to construct the class
diagram shown in figure 4.

Guideline G’1.1:
i* agents or i* roles or i* position can be mapped to pUML classes. OCL constraints
can be attached to the actor-generated classes.

There were eighth actors in our case study (see figure 3): SmartCD, Financial,
Internet Sales and Inventory (positions), System Control and Office Boy (agents), and
CD Reserve and CD Delivery (roles). These can be mapped to the classes shown in
figure 4.

The subparts of roles, positions, and agents are expressed by an “IS-PART-OF”
construct as we can see with the position SmartCD (see figure 2).

Guideline G’1.2:

Support for Structuring Mechanism in the Integration of Organizational Requirements 153

The i* relationship IS-PART-OF between positions, agents or roles can be mapped
as a class aggregation in pUML.

The position SmartCD is composed by the positions Internet Sales, Inventory, and
Financial (see figure 3). In pUML (see figure 4), SmartCD class is the aggregate of
three corresponding composite classes.

Fig. 4. Context Class Diagram of the SmartCD System

Guideline G’1.3:
The i* relationship IS-A between positions, or agents, or roles can be mapped as a
class generalization/specialization in pUML.

 In our study case we do not have this type of relationship.

Guideline G’1.4:
The i* relationship OCCUPIES between an agent and a position can be mapped as a
class association in pUML named OCCUPIES.

The agent SystemControl OCCUPIES the position SmartCD (see figure 3). In
pUML (see figure 4), there is an association between SystemControl class and
SmartCD class.
Guideline G’1.5:
The i* relationship COVERS between a position and a role can be mapped as a
respective class association in pUML named COVERS.

The position Internet Sales COVERS the role CD Delivery and COVERS the role
CD Reserve (see figure 3). In pUML (see figure 4), there is an association between
Internet Sales class and CD Delivery class, and there is an association between
Internet Sales class and CD Reserve class, which are named COVERS.
Guideline G’1.6:
The i* relationship PLAYS between an agent and a role can be mapped as a
respective class association in pUML named PLAYS.

154 WER 2002

The agent OfficeBoy PLAYS the role CD Delivery (see figure 3). In pUML (see
figure 4), there is an association between OfficeBoy class and CD Delivery class, in
pUML named PLAYS.

The remaining set of guidelines described in [13] can be used to complete the
context diagram presented in figure 4.

Of course not all concepts captured in the early requirements phase will
correspond to software system models. The models do not have a one-one
relationship; many elements of the organizational model are not part of the software
model, since not all of the organizational tasks require a software system. Many tasks
contain activities that are performed manually outside the software system, and so do
not become part of the software system model. Likewise, many elements in the
software model comprise detailed technical software solutions and constructs that are
not part of the organizational model. Nonetheless, as we shall see, pUML/OCL also
can be used to represent this information.

In this sense having already understood the context of the application with the use
of the organizational modeling technique i * we started to specify the functionality of
SmartCD in the next session.

4 Some Late Requirements of the SmartCD

Late requirements analysis results in a requirements specification document which
describes all functional and non-functional requirements of the system-to-be. In our
case study, the SmartCD actor represents the system that will help the store attract
customers (see figure 2). The system is structured in terms of three sub-units, for
Inventory, Financial and Internet Sales.

We concentrate here on the Internet Sales subsystem, since it is related to the sales
by web proposal. We can consider the context class diagram of figure 4 as the starting
point of our discussion, which is not intended to be exhaustive. As a matter of fact,
methods such as Catalysis [7] already make some of these issues that arise below very
clear.

The Internet Sales subsystem provides a website which enables customers to
remotely access the store. This site allows visitors to search for CDs, also see
information about pop stars and musical events.

There are two ways for a client to search for a CD: the fast and super search. When
in fast mode, the visitor provides the name of the album, artist or music she is looking
for. The super search, on the other hand, is intended to help those who still do not
know what they are looking for. During super search, the user can (optionally)
provide the name of the album, music, styles (Pop, Rock, Rap, Reggae, Jazz, etc.), the
recording, the repertoire (national or international) and the release time.

Assistance can be provided upon request by e-mail or through a FAQ page, which
contains answers to Frequently Asked Questions. If the visitor does not find an
answer, she can fill a form (including the subject, name, and number of the purchase
request) and submit it. Upon receipt, an on-line sales assistant will answer the
question.

Support for Structuring Mechanism in the Integration of Organizational Requirements 155

A visitor (if not already a client) would have to register in order to use the system.
Based on these extra descriptions of the system and the initial context class

diagram (see Fig. 4), we can now evolve to a new class diagram of the Internet Sales
as depicted in figure 5.

Fig. 5. Context Class Diagram of the Internet Sales Sub-Unit

5 Tool Support

In this section we describe tools that can be used to support modeling in i* and UML.
We begin describing the OME toolset. Then we proceed to review some extension
mechanisms available in the Rational Rose environment and conclude describe the
GOOD tool.

5.1Organizational Modeling Environment – OME

OME is a goal-oriented and/or agent-oriented modeling and analysis tool. OME is
being developed at the Knowledge Management Lab at the University of Toronto.
The OME tool currently supports the i*, NFR (Non Functional Requirements) and
GRL (Goal-oriented Requirement Language) modeling.

The OME tool is mainly composed of two parts: the OME kernel and the Plugins.
OME kernel has a layered architecture, comprised of three major modules (View
Layer, Model Framework Layer and KB Layer), each of which consists of several
Java classes and/or external tools. Plugins are classes implementing framework
specific functionalities, which will be coupled with the OME kernel and provide
service to the user together at run time. In each execution of the tool, different kinds

156 WER 2002

of plugins are loaded according the frameworks (i*,NFR, GRL) that the current model
is based on. Besides OME kernel and plugins, there are also a group of files
describing the configuration of frameworks.

The KB (Knowledge Base) Layer is responsible to store the objects in a model,
their relationships, and their attributes (pertinent to the model). The major module in
the KB is a Telos [12] repository.

A Telos knowledge base consists of structured objects built out of two kinds of
primitive units, individuals and attributes. Individuals are intended to represent
entities (such as a Custumer, Bank Cpy, Media, …), while attributes represent binary
relationships between entities or between relationships. Each proposition in Telos
(individuals or attributes) is defined as a quadruple with components from, label, to,
when. These denote the source, label, destination and duration of the proposition
respectively.

Although propositions are organized in Telos along simple classes (having only
tokens as instances), metaclasses (having only simple classes as instances),
metametaclasses (having only simple classes as instances, metametaclasses and so
on) for the objective of the construction of the GOOD tool, only tokens were used
because they represent concrete entities of a model.

5.2 Extension mechanism for Rational Rose

The Rational Rose is a visual modeling tool that supports Object Oriented Modeling
in UML. It is available in multiple platform (UNIX, Windows, Linux), has integration
with multiple other tools CASE (such as Rational RequisitePro, Microsoft Project,
Borland Jbuilder), support generation of code, reverse engineering and round trip
engineering. Besides these features the Rational Rose provides an interface (Rose
Extensibility Interface - REI) that makes it possible to customize and extend it.

The REI Model is essentially a Meta model of a Rose model, exposing the
packages, classes, properties, and methods that define and control the Rose
application and all of its functions. The details on the classes contained in each
package, properties and methods of each class can be found in [13] and in the Help
online of the tool Rational Rose.

To communicate with the Rose tool we cab write scripts that access the REI model.
The Rational Rose Scripting language is an extended version of the Summit Basic
Script Language. It allows the automation of Rational Rose-specific functions, and in
some cases even the execution of some functions that are not available through the
Rational Rose user interface.

5.3 GOOD (Goals into Object Oriented Development) Tool

GOOD is the prototype of a tool that makes the mapping of the descriptions of the
organizational requirements modeled in i* (modeled by the OME tool) in UML Class
Diagram (supported the Rational Rose tool).

The mapping is based in the guidelines presented in [13]. Figure 6 illustrates the
components used for the mapping: the repository of data of the tool OME, the tool

Support for Structuring Mechanism in the Integration of Organizational Requirements 157

GOOD and Rational Rose. The tool GOOD is responsible for the mapping of the files
stored in the repository of the tool OME that represent organizational models in i * for
a conceptual model of the system in the tool Rational Rose.

Fig. 6. Component of the Mapping

The GOOD tool can be seen as a Rational Rose extension. It was built using the
language Rose Scripting that allows the access to functions of Rose through pre-
defined API REI. After installed, the GOOD tool can be invoked through the Rose
Tool main menu Tool-> GOOD.

The GOOD tool consists of two components: Configuration Mapping and
Execution Mapping. The Configuration Mapping component allows the user of the
tool choose the best way (or set of rules) for mapping the organizational models in i*
to UML Class Diagrams. The Configuration Mapping component can be accessed
through Rose menu Tool->GOOD-> Configuration Mapping. Figure 7 shows the
screen that is exhibited when this option is selected.

The listbox shows the mapping options. These values are derived from the
configuration file (mapSetting.cfg). The default setup as in the original rules is
presented in [13]. However, these values can be easily modified to add or modify
mapping rules. Work is under way to support the new guidelines described in this
paper.

For example i* can be mapped to a class or to an actor (stereotype of a class) in
UML, a task represented in SD (Strategic Dependency) model can be mapped to an
public operation in class that represent the dependee (actor responsible to execute the
task) or to a use case (or even to stereotype of a class (<<Task>>)), while a resource
represented in SD (Strategic Dependency) i* model can be mapped to a class.

The Execution Mapping component is responsible for executing the mapping. It
can be accessed through the Rational Rose menu Tool->GOOD-> Executation
Mapping. The first activity that the script execute is to prompt the user to select the
path were the organizational i* models are stored (a Telos file). Then the script reads
the selected file and captures the i* elements (actors, tasks, resources, goals and
softgoals) as well as their relationships (dependency links, means-end links and task
decompositions). Next the GOOD tool read a configuration file (mapSetting.cfg, wich
stores the mapping rules). Finally it then executes the mapping, creating a class
diagram such as the one described by figure 4.

158 WER 2002

Fig. 7. The Screen of the Configuration Mapping

6 Related Work

The area of Requirements Engineering [7] has developed several novel techniques for
early requirements capture [8]. Bubenko emphasizes the need to model organizations
and their actors, motivations and reasons [8]. In his work, enterprise modeling and
requirements specification are based on the notion that a requirements specification
process, from a documentation point of view, implies populating (instantiating) five
interrelated sub-model, representing areas of knowledge of the organization, which
include an Objectives Model, an Activities & Usage Model, an Actors Model, a
Concepts Model, and an Information Systems Requirements Model. Since the models
are informal, or at best semi-formal, only some verification can be performed
automatically, such as syntactical correctness and connectedness.

In the KAOS framework [8] goals are explicitly modeled and simplified (reduced)
through means-end reasoning until it reaches the agent level of responsibilities.
KAOS provides a multi-paradigm specification language and a goal-directed
elaboration method. The language combines semantic nets for conceptual modeling of
goals, requirements, assumptions, agents, objects and operations in the system;
temporal logic for the specification of goals, requirements, assumptions and objects;
and state-based specifications for the specification of operations. However, agents are
expected to behave as prescribed. This feature makes it difficult to analyze strategic
relationships and implications in KAOS.

Another important issue related to early phase requirements capture is the
representation of qualities attributes, such as accuracy, performance, security,
modifiability, etc. In [9] a comprehensive approach for dealing with non-functional
requirements - NFR is presented. Structured graphical facilities are offered for stating
NFRs and managing them by refining and inter-relating NFRs, justifying decisions,
and determining their impact. A current research topic is the extension of traditional
Object-Oriented Analysis to explore the alternatives offered by the non-functional
goal-oriented analysis, which systematizes the search for a solution which
characterizes early phases or requirements analysis, rationalizes the choice of a

Support for Structuring Mechanism in the Integration of Organizational Requirements 159

particular solution, a relates design decisions to their origins in organizational and
technical objectives [10].

Although UML has been used mainly for modeling software, recent proposals have
used it for describing enterprise and business modeling. For example, [1] claims that
UML is a suitable language for describing both the structural aspects of business
(such as the organization, goal hierarchies, or the structure of the resources), the
behavioral aspect of a business (such as the processes), and the business rules that
affect structure and behavior. In [11] UML is used, from a business perspective, to
describe the four key elements of an enterprise model: purpose, processes, entities and
organization. The challenge is to transfer the information available in the (early)
business models to the (late) software requirements models.

7 Conclusion

In this paper, we have suggested that requirements capture has to be done at different
levels of abstraction (ranging from the early phase to the late phase requirements).
Furthermore, we argue that UML alone is not adequate to deal with all different types
of analysis and reasoning that are required during the requirements capture phases.
Instead, we advocate the use of two complementary modeling techniques, i* and a
precise subset of UML.

To model and understand issues of the application and business domain (the
enterprise) a developer can use the i* framework which allows a better description of
the organizational relationships among the various agents of a system as well as an
understanding of the rationale of the decisions taken. For later requirements capture
we suggest the use of pUML, a subset of UML, which has a well-defined semantics.
Annotations in OCL can also be deployed for describing constraints on the models.
We believe that structuring mechanism present in i* framework, such as agent, role
and position are appropriate to describe complex systems. Thus we improved
previous guidelines to support their mapping. Furthermore, we believe that each
language has its own merits for supporting requirements capture. But as long as
different techniques are used, then a key issue is the development of an integrated
framework to support and guide the interplay of requirement captures activities at the
various levels, and to support traceability and change management. Indeed, the
guidelines presented in the paper are important steps in this direction. They can help
to map the descriptive, early requirements model of the i* technique into a
prescriptive, late requirements model expressed in pUML/OCL.

Further some real industrial case studies are also expected. Work is underway to
provide some tool support for the mapping.

References

[1] Erikson, H. and Penker, M.: “Business Modeling with UML: Business Patterns at Work”.
OMG Press .John Wileys & Sons 2000.

160 WER 2002

[2] Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. Proceedings of IEEE International Symposium on Requirements Engineering -
RE97, pp.226-235, Jan. 1997.

[3] Booch, G., Jacobson, I., Rumbaugh, J.: Unified Modeling Language User Guide. (ed.):
Rational Software Corporation. Addison-Wesley Object Technology Series. Jan., 1999.

[4] Mylopoulos, J., Chung, L., Yu, E.: From Object-Oriented to Goal-Oriented Requirements
Analysis. Communications of the ACM, 42(1): 31-37, January 1999.

[5] Evans, A., Kent, S.: Core Meta-Modelling Semantics of UML: The pUML Approach.
UML’99 – The Unified Modeling Language. Proceedings of <<UML>>’99 The Unified
Modeling Language: Beyond the Standard - The Second International Conference. (eds.):
Robert France and Bernhard Rumpe. Fort Collins, CO, USA. pp.140-15. Oct 1999.

[6] Warmer, Jos B., Kleppe, Anneke G.: The Object Constraint Language: Precise Modeling
with UML. (ed.): Addison-Wesley Object Technology Series. March, 1999.

[7] D’Souza, D. F., Wills, A. C.: Objects, Components, and Frameworks with UML. The
Catalysis Approach. (ed.): Addison-Wesley. 1999.

[8] van Lamsweerde, A., Darimont, R., Letier, E.: Managing Conflicts in Goal-Drivel
Requirements Engineering. IEEE Transaction on Software Engineering, Special Issue on
Inconsistency Management in Software Development, November 1998.

[9] Chung, L. K., Nixon, B. A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering, Kluwer Publishing, 2000.

[10] Mylopoulos, J., Chung, L., Liao, S., Wang, H., Yu, E.: Extending Object-Oriented
Analysis to Explore Alternatives. Submitted for publication.1999.

[11] Marshal, C.: Enterprise Modeling with UML: Designing Successful Software through
Business Analysis. (ed.): Addison-Wesley Object Technology Series. 2000.

[12] Mylopoulos, J., Borgida, A., Jarke, M., Jarke, M., Telos: Representing Knowledge About
Information Systems, ACM Transactions on Information Systems, October, 1990.

 [13] Castro, J., Alencar, F., Cysneiros, G.: Integrating Organizational Requirements and Object
Oriented Modeling. In: Fifth International Symposium on Requirements Engineering -
RE’01, Toronto. 2001.

Support for Structuring Mechanism in the Integration of Organizational Requirements 161

