
 124

A Non-Functional Approach for COTS Components
Trading*

Luis Iribarne, Antonio Vallecillo, Carina Alves, Jaelson Castro
University of Almería, University of Málaga, Universidade Federal de Pernambuco.

liribarne@ual.es, av@lcc.uma.es, {cfa, jbc}@cin.ufpe.br

Abstract. In CBSD, the possible benefits of COTS software development, such as
low cost, low risk, and high quality, cannot be satisfactorily achieved due to
inadequate and/or incomplete proposals for component specification. In particular,
non-functional aspects play an important role for components description and
selection, but are usually not taken into account when documenting components and
searching for them. In this paper, non-functional features of commercial components
are analyzed, and a template for collecting this kind of information in XML
documents is proposed in order to allow effective COTS components trading.

Keywords: COTS components, Non-functional requirements, Trading, Component-
Based Software Development (CBSD).

1. Introduction

In COTS-based development process, effective evaluation and selection of COTS

software products is one of the key aspects of the system development life cycle. Its
success largely depends on the accurate understanding of the capabilities and
limitations of the individual candidate products. COTS-based development involves
simultaneous trade-offs among user requirements, system architecture and COTS
products. The selection of suitable components is often a non-trivial task and all these
aspects should be carefully considered [15]. As a result, the customers must accept the
possibility that the resulting system might be a compromise among these concerns.

In general, a COTS selection process initially decomposes the requirements for the
potential COTS candidates into a hierarchical set of criteria.

These criteria usually include components’ functionality, non-functional
requirements, architecture constraints, and non-technical factors such as vendor
guarantees and legal issues. Then, during the selection activity, the properties of each
COTS candidate are identified and assessed according to this set of evaluation
criteria.

*This work has been supported by CYTED project "WEST: Web-oriented Software Technology" (CYTED
subproject VII, code VII.18)

 125

It is worth noting that non-functional requirements play an important role during
the assessment of COTS components. The lack of a careful consideration of non-
functional requirements increases the risks of COTS failure and the costs of the final
system because these requirements often correspond to strategic or business
objectives of the organization as a whole [9]. Since non-functional requirements have
a global nature, i.e. the satisfaction of a particular requirement can affect several parts
of the system, they might have higher priority if conflicting with some of the
functional requirements. In addition, the careful analysis of quality attributes can
improve the discrimination process between competing COTS products that already
meet the core functional requirements. For instance, if two components implement the
same task (i.e. they have similar functionality), non-functional attributes may be used
in the selection process as further and decisive criteria.

Despite the widely recognised importance of considering non-functional
requirements in CBSD, most proposals for documenting COTS components fail to
take them into account. Or even if they do, either their treatment is too simplistic (as
in the case of the approaches that follow the ODP “property”-based model [14]), or
they are not fully integrated within a RE framework that covers the initial phases of
the software development process, and that allows to transform the user requirements
into the appropriate architectural and component (functional and non-functional)
requirements.

On the other hand, trading is the natural mechanism defined in COTS-based
development for searching and locating components. A client role that requires a
particular component service can query a matchmaking agent (the trader) for
references to available components that provide the kind of service required. Service
advertisements are usually called “exports”, while queries are called “imports”. The
trader provides just the references to possible service providers, but without
intervening in the service provision itself, which is a private matter between the client
and the server (the one selected by the client from the list of candidates returned by
the trader). An example of a COTS components trader for open systems can be found
in [13]. However, what we found in most current traders is that they fail (again) to
deal with non-functional requirements.

This paper presents a proposal for documenting COTS components in such a way
that non-functional requirements can be described, and that traders can use for
effectively locating and selecting the appropriate components. One of the major
advantages of our proposal is that has been designed within a RE framework, namely
NFR [5]. This allows a natural integration with it, as well as other interesting benefits,
such as requirements decomposition and traceability.

This paper is organized as follows. In Section 2 we explain a proposal for
documenting COTS components using XML templates, that can be used for services
trading in commercial environments [13]. After that, in Section 3 we focus on non-
functional requirements, identifying and analyzing the importance of these
requirements for effective “off-the-shelf” components evaluation and selection
processes. Then, in Section 4 we propose a way to describe non-functional
requirements in COTS documents, extending the XML templates introduced in
Section 2. Finally, we discuss some related work and draw some conclusions in
Sections 5 and 6.

 126

2. Documenting commercial components

In CBSD, the process of building COTS-based systems includes some tasks, such
as
(a) searching for components that satisfy the requirements of the system architecture;
(b) evaluating these components; (c) adapting or extending the selected components
to fit into the application architecture; and (d) gluing or integrating these components
together [6]. It is very important for these processes to use complete, concise and
unambiguous specifications of components in order to guarantee a successful COTS
software development. In addition, these specifications could be later registered into
well-know repositories by developers or third parties, facilitating the COTS
development process.

Most of the existing proposals for documenting components are based on the
notion of component interface, which provides a form to control the dependencies that
arise between components in a program or system [1]. In that way, most of the
programming languages (e.g., Java, C#, Smalltalk, and so on) support some
mechanisms to define interfaces by means of Interface Definition Languages (IDLs).
However, most IDL proposals are restricted to express component syntactical
features, ignoring other relevant aspects, such as protocols, behavioral, or semantic
information [19], or non-functional features [5][18].

On the other hand, the proper searching and selection processes of COTS
components have become the cornerstone of effective COTS development. However,
these processes currently face serious limitations, mainly because the information
available about the components is not expressive enough for their effective selection,
and also because the search and evaluation criteria are usually too simplistic to
provide practical utility.

In [13] we introduced a proposal for documenting and searching COTS
components, based on two XML templates, the first one (called COTScomponent) for
documenting components, and the second one (called COTSquery) for querying
traders. These templates can be used by several kinds of users (i.e., system architects,
designers, developers, and vendors) to export and import components to/from
software repositories. These templates are available at http://www.cotstrader.com.

Following our proposal, a component can be defined inside a COTScomponent
template, which consists of four main parts: functional, properties, packaging, and
marketing part. Figure 1 shows a COTS document example in XML format, using the
COTScomponent template. A detailed description of the example document is beyond
the scope of this paper, although a complete description is available in our
COTStrader web site. At the beginning of this template we can see the name of the
component (OnePlaceBuffer) and two name spaces, first one pointing to the COTS-
XMLSchema schema (living at the COTStrader site) and the second one pointing to
the W3C’s XMLShema types (e.g., for parsing processes).

Next, we can see the four parts mentioned previously. The functional part
describes the computational aspects of the service, including both syntactic (i.e.,
signature) and semantic information. Our functional definition of a service will host
the set of interfaces offered by the service (providedInterfaces), and the set of
required interfaces that any instance of the service may require from other

 127

components when implementing its supported interfaces (requiredInterfaces). In this
example, the component offers two interfaces, one with the basic functionality, and
other for “logging-in” into the service. Semantic information can be described with
pre/post conditions (inside behavior tag), as well as by means of protocols
(serviceAccessProtocol), which specify the relative order in which a component
expects their methods to be called, and the way it calls other components’ methods.
The properties part describes the non-functional aspects of the service (e.g., QoS,
NFRs, etc.), which are based on “properties”, i.e. pairs (name, value) following the
RM-ODP standard. The packaging part contains the packaging information about
how to download, deploy and install the COTS component that provides the required
service, including implementation details, context and architectural constraints, etc.
Finally, the marketing information deals with the rest of the non-technical issues of
the service, such as licensing and pricing information, vendor details, special offers,
etc.

In this paper we will show how this proposal can be enhanced to deal with non-
functional requirements in a more effective way, and within a RE approach, namely
NFR.

3. Non-Functional description

Non-functional requirements address important issues of quality and restrictions
for software systems, although some of their particular characteristics make their
specification and analysis difficult [5]:

• Non-functional requirements can be subjective, since they can be interpreted
and evaluated differently by different people;

• Non-functional requirements can be relative, since their importance and
description may vary depending on the particular domain being considered;

• Non-functional requirements can be interacting, since the satisfaction of a
particular non-functional requirement can hurt or help the achievement of
other non-functional requirement.

Despite this problematic nature of non-functional requirements, we do insist that
they need to be explicitly treated during the evaluation of COTS components. Unlike
the conventional development, in COTS-based systems customers do not have control
over components capabilities nor access to their internal behavior. Therefore, the
careful analysis of non-functional requirements such as interoperability, adaptability,
and reliability can improve the evaluation of COTS components and guarantee that
components will be properly integrated into the specified software architecture.

In order to effectively deal with non-functional requirements, we use some
principles from a qualitative approach called NFR Framework [5]. This approach is
based on the explicit representation and analysis of non-functional requirements.
Considering the complex nature of non-functional requirements, we cannot always
say that non-functional requirements are entirely accomplished or satisfied. Rather,
the NFR Framework represents non-functional requirements as softgoals, which does
not necessarily have a priori, clear-cut criteria of satisfaction.

 128

<?xml version="1.0"?>
 <COTScomponent name="OnePlaceBuffer"
 xmlns="http://www.cotstrader.com/COTS-XMLSchema.xsd"
 xmlns:types="http://www.w3.org/2001/XMLSchema">

 <!-- 1: Functional information -->
 <functional>
 <providedInterfaces>
 <interface name="OnePlaceBuffer">
 <description notation="CORBA-IDL">
 interface OnePlaceBuffer {void write(in long x); long

read();};
 </description>
 <behavior notation="Larch"> ... </behavior>
 </interface>
 <interface name="LoginInterface"> ... </interface>
 </providedInterfaces>
 <requiredInterfaces> ... </requiredInterfaces>
 <serviceAccessProtocol> ... </serviceAccessProtocol>
 </functional>

 <!-- 2: Non functional information -->
 <properties notation="W3C">
 <property name="confidentiality">
 <type>xsd:string</type> <value>CRYPTOGRAPHY[PublicKey]</value>
 </property>
 ...
 </properties>

 <!-- 3: Packaging information -->
 <packaging>
 <description notation="CCM-softpkg"

href=".../OnePlaceBuffer_Impl.csd"/>
 </packaging>

 <!-- 4: Marketing information -->
 <marketing>
 <license

href="http://www.cotstrader.com/examples/OPB/license.html"/>
 <expirydate> 05-10-2001 </expirydate>
 <certificate

href="http://www.cotstrader.com/examples/OPB/lcard.png"/>
 ...
 </marketing>

 </COTScomponent>

Figure 1. A COTS document using the COTS-XML Schema template

 129

In addition, non-functional requirements can contribute positively or negatively,
and fully or partially, towards achieving other non-functional requirements. Firstly,
they are decomposed into more specific non-functional requirements. For instance,
the security requirement can be considered quite broad and abstract. To explicitly deal
with such a broad requirement, we may need to break it down into smaller parts, so
that unambiguous solutions can be found. By treating this high-level requirement as a
softgoal to be achieved, we can decompose it into more specific subgoals which
together satisfy the higher-level softgoal (this is an AND type of contribution). Thus
the security softgoal can be decomposed into sub-softgoals: integrity, confidentiality
and availability. Another kind of contribution is the OR type, with this relationship
the softgoal is satisfied if any of its sub-goals is.

At some point, when the refinement process carried out so far provides more
specific descriptions of the stated non-functional requirements, developers may
consider that these requirements have been sufficiently refined and possible
operationalizations can be found. It is worth noting that operationalizations are related
with functionalities that implement initial non-functional requirements. A very
important aspect of non-functional requirements decomposition using the NFR
Framework is that, as far as NFR softgoals are refined into more detailed ones, it is
possible to identify interactions between non-functional requirements. These
interactions include positive and negative contributions and have a critical impact on
the decision process for achieving other non-functional requirements. A suitable way
to deal with such complex interdependencies is to assign priorities to non-functional
requirements in order to make appropriate tradeoffs among NFRs. In addition, all
design decisions should be supported by well-justified rationales.

_

Performance[System]

Throughput
Response time

Integrity[Info] Availability[Info]

Confidentiality[Info]

Security[Info]

Cryptography[Info] Authorization[Info]

A nd Hurt
-

Legend
Operationalizating Goal NFR Goal

Figure 2. Decomposition of non-functional requirements using the NFR Framework

For instance, figure 2 shows a decomposition of non-functional requirements
using the NFR Framework. The goal security of information is decomposed into the

 130

subgoals integrity, availability, confidentiality through an AND type of contribution
(i.e. only if all subgoals are met the overall goal is achieved). While the goal system
performance is decomposed into throughput and response time. Interestingly, it is
necessary to address interactions between different kinds of non-functional
requirements even though the non-functional requirements were initially stated as
separate requirements. Note that cryptography contributes negatively (show as “-”)
for system performance. Since the NFR Framework facilitates the understanding of
what a particular non-functional requirement means, this approach can effectively
help the description of NF information for COTS documentation.

4. Including Non-Functional information into COTS documents

Once we have identified and analyzed the importance of the non-functional
requirements for effective COTS component evaluation process, in this section we
propose a mechanism for collecting non-functional information into COTS documents
using the COTS-XMLSchema template [13]. For our purposes, we only focus on the
properties part. At the end of this paper we include two appendices which show the
non-functional schemas (i.e., grammar for documenting NF information) developed
and used in this paper. In order to explain this section, we will use an instantiation of
these schemas in the following examples.
Our main goal is to extend this information in order to enhance the COTS
components documentation regarding the non-functional requirements so COTS
components can be naturally integrated into the NFR framework. In our XML
approach we adopted the ODP style to describe non-functional properties, which are
the usual way in which the non-functional aspects of objects, services and
components are expressed in the literature. We suggest the use of W3C types for
describing properties, although any notation is valid for describing them (e.g. the
OMG's CCM style [17] which also uses an XML vocabulary). In figure 3 we show a
simple example of use case for documenting non-functional information.

 <properties notation="W3C">
 <property name="confidentiality">
 <type>xsd:string</type> <value>CRYPTOGRAPHY[Public Key]</value>
 </property>
 <property name="capacity">
 <type>xsd:int</type> <value>1</value>
 </property>
 <property name="isRunningNow"> <!-- dynamic property -->
 <type>xsd:bool</type> <value

href="http://...:8080/servlet/OPB.running"/>
 </property>
 <property name="keywords">
 <type>xsd:string</type> <value>storage,bounded</value>
 </property>
 </properties>

Figure 3. An example of some NF information in a COTS description template

Inside the <properties> tag there is a collection of properties, each one
indicated by a <property> tag, and with associated type and value. Keyword-

 131

based searches are also allowed, including the special property “keywords”. Dynamic
properties can also be implemented by declaring the reference to the external program
that evaluates their current value. Properties can also be described in a separate file,
which can be pointed from the <properties> tag as usual:
<propertiesnotation="CCM-properties”href=".../OnePlaceBuffer.cpf"/>

On the other hand, at the COTS component description level we can enhance

properties, which may be either single properties, or composition of properties.
Composition can be either AND-composition or OR-composition. Figure 4 shows an
“OR” example.

<properties notation="W3C">
 <property name="security" composition=”OR”>
 <property name="user-authorization">
 <type>xsd:string</type> <value>LOGIN</value>
 </property>
 <property name="manager-authorization">
 <type>xsd:string</type> <value>ADMIN</value>
 </property>
 </property>
 </properties>

Figure 4. Including OR composition in a property tag

In addition, we need to express that a given property (no matter whether it is
simple or composed) is “implemented by” a given functional element (e.g., an
interface), or that a given property is “present” in a given functional element. The first
issue permits NFRs traceability (which functional element provides a NFR), while the
second one defines the functional elements that exhibit a certain NFR (by default, the
whole component). Thus, as we can see in Figure 5, we propose adding two optional
child XML elements to a property: <implementedBy> and <implementedIn>
tags.

 <properties notation="W3C">
 <property name="user-authorization">
 <type>xsd:string</type><value>LOGIN</value>
 <implementedBy>LoginInterface</implementedBy>
 </property>
 <property name="replication">
 <type>xsd:string</type><value>CONSENSUS</value>
 <implementedIn>OnePlaceBuffer</implementedIn>
 <implementedIn>LoginInterface</implementedIn>
 </property>
 </properties>

Figure 5. Functional element/s presented/provided by/from a NFR

In these descriptions, the information within the <implementedBy> and
<implementedIn> tags refers to “functional” elements described in any of the
<functional> tags of the COTS component, that is, inside a COTScomponent
document (see Section 2), such as in a <providedInterface>, a <behavior>,

 132

or a <serviceAccessProtocol>. A valid XML pointer to a local XML tag
refers to the functional element. It is important to note that the reference to a
functional element should always be a local reference, i.e., it should point to an
element present in the same template, since we are trying to express how a NFR is
implemented by that particular component, or which particular interface provides a
given property.

Once we have shown how to describe NFRs in terms of properties, there is only
one thing left: how to have them into account when searching for components. In
[13], a client will need to provide two XML documents in order to look for
components satisfying his requirements. The first one containing the selection criteria
to be used by the trader to look for the service (WHAT), and it will point to the
second document, which describes the main features of the required service (HOW).
That is, queries look for COTS candidates containing a <COTScomponent> XML
document with the component features that we wanted in the target component,
together with a <COTSquery> document that determines the selection criteria. In
the particular case of NFRs, the <COTScomponent> document establishes the
precise properties we are looking for (see figure 6) and then in the <COTSquery>
the selection criteria are determined (see figure 7).

 <?xml version="1.0"?>
 <COTScomponent name="authorizationStyle"
 xmlns="http://www.cotstrader.com/COTS-XMLSchema.xsd">
 <properties notation=”W3C”>
 <property name=”security” composition=”OR”>
 <property name=”user authorize”><type>xsd:string</type></property>
 <property name=”manager-

authorize”><type>xsd:string</type></property>
 </property>
 <property name=”isRunningNow”><type>xsd:boolean</type></property>
 </properties>
 </COTScomponent>

Figure 6. Document A of a query (WHAT). Selection criteria.

<?xml version="1.0"?>
<COTSquery name="authorizationStyle"
 xmlns="http://www.cotstrader.com/COTS-XMLSchema.xsd">
 <COTSdescription href="http://.../authorizationStyle.xml"/>
 <propertyMatching>
 <constraints notation="Xquery">
 (//property[name="security"]/property[name="user-

authorize"]/value="SAFE") and
(//property[name="isRunningNow"]/value="TRUE")

 </constraints>
 <preferences notation="ODP">first</preferences>
 </propertyMatching>
 </COTSquery>

Figure 7. Document B of a query (HOW). Constrains and preferences.

Usually, the property matching is accomplished by ODP traders [14], using
constraints and preferences. Constraints are boolean expressions consisting of values,

 133

constants, relational operators (<, >=, =, !=), logical operators (not, and, or) and
parenthesis, that specify the matching criteria for including a component in the
trader’s list of candidates for the current searching. Constraints are evaluated by the
trader by substituting the property names with their actual values, and then evaluating
the logical expression. Components whose constraint evaluates to false are discarded.
In the example, for writing the expression, we have used the W3C's XML
QueryAlgebra notation [21]. Preferences allow sorting the list of candidates according
to a given criteria, which is expressed using the terms first, random,
min(expr) and max(expr), where expr is a mathematical expression
involving property names [14].

On the other hand, quality aspects are hardly specified in COTS descriptions, yet
they are critical during the selection/matching process. In that sense, it is necessary to
describe refinements, identifying interdependencies among different non-functional
requirements and assigning priorities that provide rationales useful during the
decision-making process. Therefore, we propose to enrich the above XML elements,
including priorities when the target COTS component is described (see figure 8).
Priorities can be assigned to each first-level property in the <properties> tag.
Those priorities levels may be assigned using the scale 0 (very low) to 9 (very high),
which is the scale commonly used in most decision- making processes nowadays.

<properties notation="W3C">
 <property name=”security” composition=”OR” priority=7>
 <property name="user-authorize"><type>xsd:string</type></property>
 <property name="manager-

authorize"><type>xsd:string</type></property>
 </property>
 <property name="isRunningNow"

priority=4><type>xsd:boolean</type></property>
</properties>

Figure 8. Priority of the property elements

5. Related work

In this section we discuss some of the works proposed in the literature which can
be related to our proposal in two main areas, namely: (a) documentation of
components and (b) non-functional requirements (both areas focused on COTS
components trading).

In the first place, there are a number of proposals related to enhancing the
documentation of components. Dong et al. [8] show a proposal on component
specification template, which includes functional information (i.e., structural and
behavioural aspects of the services), non-functional properties, and some extra
information (i.e., applicability, standards, related components, and sample uses).
IBM1 is working on a proposal for documenting their large grained components, and
there are several interesting proposals from SEI2 claiming better component
documentation. On the other hand, Jun Han [12] has also defined some component
specification templates in a joint project with Fujitsu Australia, which provide
semantic information for proper usage and selection of components on top of their

 134

standard signature description. Finally, Cho [4], Bastide et al. [1], and Canal et al. [3]
propose IDL extensions for dealing with protocol information, using state transitions,
Petri nets, and pi-calculus, respectively. Our previous work [13] even shows how
most of these proposals can also be smoothly integrated into XML templates that
could be used for effective trading of COTS components. However, most of these
approaches deal with the components’ non-functional requirements in a very
simplistic way. What we have showed here is that these functional descriptions can be
easily integrated with a consolidated proposal for dealing with non-functional
requirements, such as NFR, hence allowing to connect both worlds.

In the second place, there are the works proposed in the literature for dealing with
non-functional requirements. Franch uses a notation, called NoFun, for describing
non-functional requirements [10]. This approach is product-oriented, i.e., NoFun is a
notation for describing non-functional information of software systems at the product
level. This notation was defined in a component-programming framework. In a
previous work [7], we proposed an approach, named the CRE (COTS-based
Requirements Engineering) Method, which was developed to facilitate a systematic,
repeatable and requirements-driven COTS software selection process. A key issue
supported by this method is the definition and analysis of non-functional requirements
during the phases of COTS evaluation and selection. One of the advantages of our
proposal with those is the integration with a well-known RE framework, which allows
to incorporate COTS components into the traditional RE methods, enabling
requirements decomposition and traceability, as discussed above.

6. Conclusions

Component-Based Software Development (CBSD) aims at building software
systems by searching, selecting and integrating COTS components. In a previous
work [13], we analyzed the required features that COTS components traders should
have, and presented COTStrader, an Internet-based trader for COTS components that
handled the heterogeneity, scalability and evolution of COTS markets.

However, the treatment of non-functional requirements was too simplistic, as in
most current proposals. Non-functional requirements cannot be ignored during the
assessment of commercial components in order to obtain an effective and realistic
trading.

1 http://www.ibm.com/software/components
2 http://www.sei.cmu.edu

 135

In this context, our proposal introduces a way to describing COTS components’

non-functional information, integrating it with functional information using COTS-
XMLSchema templates [13]. Non-functional requirements are described using the
NFR approach, which has been successfully used in many situations. The XML
templates introduced here have been primarily defined for documenting and looking
for COTS components, hence allowing more effective trading processes in open
systems, particularly for the Internet. This work have combined the functional and
non-functional aspects of COTS components into a single description, and integrated
into a trading process. As future work, we plan to concentrate on the system’s non-
functional requirements, and how they can be mapped into the system’s software
architecture requirements, and then into the individual components’ requirements.
Basically, we are concerned with the traceability of such requirements along the
software life-cycle, which is a critical issue in CSBD.

References

[1] Bachman, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord, R.,
and Wallnau, K, “Technical Concepts of Component-Based Software Engineering” (Vol
2). Technical Report CMU/SEI-2000-TR-008. SEI, 2000.

[2] Bastide, R., Sy, O., and Palanque, P., “Formal Specification and Prototyping of CORBA
Systems.” In Proceedings of ECOOP’99, number 1628 in LNCS, Springer-Verlag, 1999,
pp. 474-494.

[3] Canal, C., Fuentes, L., Troya, J. M., and Vallecillo, A., “Extending CORBA Interfaces
with π-calculus for Protocol Compatibility.” In Proceedings of TOOLS Europe 2000,
France, June 2000. IEEE Press, pp. 208-225.

[4] Cho, I., McGregor, J., and Krause, L., “A Protocol-Based Approach to Specifying
Interoperability Between Objects.” In Proceedings of TOOLS’26, IEEE Press, 1998, pp.
84-96.

[5] Chung, L., Nixon, B., Yu, E., and Mylopoulos, J., Non-Functional Requirements in
Software Engineering. Kluwer Academic Publisher, 2000.

[6] Dean, J., and Vigser, M. R., “System Implementation Using Off-the-shelf Software.” In
Proceedings of the 9th Annual Software Technology Conference, April 1997.

[7] Alves, C., Castro, J., and Alencar, F., “Requirements Engineering for COTS Selection.” In
Third Workshop on Requirements Engineering, Rio de Janeiro, Brazil, 2000.

[8] Dong, J., Alencar, P. S. C., and Cowan, D. D., “A Component Specification Template for
COTS-based Software Development.” First Workshop on Ensuring Successful COTS
Development. May 1999.

[9] Dukic, L., “Non-Functional Requirements for COTS Software Components.” Workshop
Ensuring Successful COTS Development. May 2000.

[10] Franch, X., and Burgues, X. A., “Language for Stating Component Quality.” XIV
Simpósio Brasileiro de Engenharia de Software. October 2001.

[11] Garlan, D., Allen, R., and Ockerbloom, J., “Architectural Mismatch (Why it is hard to
build systems out of existing parts).” Proceedings of the 17th International Conference on
Software Engineering, April 1995.

 136

[12] Han, J., “Temporal Logic Based Specifications of Component Interaction Protocols.” In J.
Hernández, A. Vallecillo, and J. M. Troya (eds.). Proceedings of the ECOOP’2000
Workshop on Object Interoperability (WOI’00), June 2000, pp. 43-52.

[13] Iribarne, L., Troya, J. M., and Vallecillo, A., “Trading for COTS Components in Open
Environments.” To appear in Proceedings of 27th Euromicro. Workshop on Component
Based Software Engineering, Warsaw, Poland. September 2001. IEEE Software.

[14] ISO/ITU-T. Information Technology - Open Distributed Processing - ODP trading
function. Rec. ISO/IEC DIS 13235, ITU-T X.9tr. Feb, 1996.

[15] Kotonya, G., and Sommerville, I., “Requirements Engineering with Viewpoints.” Software
Engineering, 1(11) 1996, pp. 5-18.

[16] Ncube, C., and Maiden, N., “PORE: Procurement-Oriented Requirements Engineering
Method for the Component-Based Systems Engineering Development Paradigm.”
International Workshop on Component-Based Software Engineering, May 1999.

[17] OMG. “The CORBA Component Model (CCM).” Object Management Group. June,
1999. http://www.omg.org.

[18] Rosa, N., Alves, C., Cunha, P., Castro, J., and Justo, G., “Using Non-Functional
Requirements to Select Components: A Formal Approach.” In Proceedings of IDEAS’01,
San José, Costa Rica. April 2001.

[19] Vallecillo, A., Hernández, J., and Troya, J. M., “Object Interoperability.” In ECOOP’99
Workshop Reader, number 1743 in LNCS, pages 1-21. Springer-Verlag, 1999.

[20] W3C. XML Schema Language. XML Schema subgroup. World Wide Web
Consortium.Technical Report, June 2001. http://www.w3.org/XML/Schema.

[21] W3C. XQuery 1.0: A Query Language for XML. XML Query subgroup. World Wide
Web Consortium. Technical Report, June 2001. http://www.w3.org/TR/query-algebra/

Appendix A. The NF-Schema in COTS-XMLSchema

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<!-- This is a part of COTS-XMLSchema -->
<!-- Non Functional description -->
 <xsd:element name="properties">
 <!-- Properties tag has a notation attribute, -->
 <xsd:complexType>
 <xsd:attribute name="notation" type="xsd:string"/>
 <!-- then properties may choice between a href attribute or
 one or more property tags -->
 <xsd:choice>
 <xsd:attribute name="href" type="xsd:uriReference"/>
 <xsd:element name="property" maxOccurs="unbounded">
 <!-- Property has 3 attributes: name, composition and priority

-->
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string"/>
 <xsd:attribute name="composition" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="OR"/>
 <xsd:enumeration value="AND"/>
 </xsd:restriction>

http://www.w3.org/TR/query-algebra/

 137

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

 </xsd:simpleType>
 </xsd:attribute> <!-- end composition attribute -->
 <xsd:attribute name="priority" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInterger">
 <xsd:minInclusive value="0"/>
 <xsd:maxInclusive value="9"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute> <!-- end priority attribute -->
 <!-- Elements of a property: type, value, implementedBy,
 implementedIn, and one or more property tags (appointing
to property element just defined above) -->
 <xsd:sequence>
 <xsd:element name="type" type="xsd:datatype"/>
 <xsd:element name="value" minOccurs="0"/>
 <xsd:complexType>
 <xsd:choice>
 <xsd:attribute name="href" type="xsd:uriReference"/>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string"/>
 </xsd:simpleContent>
 </xsd:choice>
 </xsd:complexType> <!-- end value element -->
 <xsd:element name="implementedBy" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="implementedIn" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element href=”property”/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element> <!-- end property element -->
 </xsd:choice>
 </xsd:complexType>
 </xsd:element> <!-- end properties element -->
</xsd:schema>

 138

Appendix B. The query NF-Shema in COTS-XMLSchema

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<!-- Queries looking for NF -->

 <xsd:element name="propertyMatching">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="constraints" type="locationType"/>
 <xsd:element name="preferences" type="locationType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

<!-- A complex type is declared both in constraints and preferences -->

 <xsd:complexType name="locationType">
 <xsd:attribute name="notation" type="xsd:string" minOccurs="0"/>
 <xsd:choice>
 <xsd:attribute name="href" type="xsd:uriReference"/>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string"/>
 </xsd:simpleContent>
 </xsd:choice>
 </xsd:complexType>

</xsd:schema>

