
92 WER2000

From Early Requirements Modeled by the i* Technique
to Later Requirements Modeled in Precise UML

Fernanda Alencar1, Jaelson Castro2*, Gilberto Cysneiros2 , John Mylopoulos3

1Universidade Federal de Pernambuco, Dep. Eletrônica e Sistemas, Brazil
E-Mail: fmra@npd.ufpe.br

2Universidade Federal de Pernambuco, Centro de Informática, Recife, Brazil
E-Mail: {jbc,gaacf}@cin.ufpe.br

3University of Toronto, Department of Computer Science, University of Toronto, Canada
E-Mail: jm@cs.toronto.edu

Abstract. Requirements capture has been acknowledged as a critical phase of
software development, precisely because it is the phase which deals not only
with technical knowledge, but also with organizational, managerial, economic
and social issues. The emerging consensus is that a requirement specification
should include not only software specifications but also business models and
other kinds of information describing the context in which the intended system
will function. Unfortunately, the current dominant object oriented modeling
technique, i.e. Unified Modeling Technique, is ill equipped for capturing early
requirements which are typically informal and often focus on organisational
objectives. UML is more suitable for later phases of requirements capture,
which usually focus on completeness, consistency, and automated verification
of functional requirements for the new system. In this paper, we present some
guidelines for the integration of early and late requirements specifications. For
the organizational modeling we use the i* technique, which focuses on the de-
scription of organizational relationships among various organizational actors,
as well as an understanding of the rationale for the alternatives chosen. For
the functional requirements specification, we rely on the precise Unified Mod-
eling Language (pUML), annotated with constraints described in OCL. A
small CD store example is used to illustrate how the requirements process it-
erates between the early and late requirements specification.

Keywords: Requirements Engineering, Object Oriented Development, UML,
Early and Later Requirements

* This work was carried out while the first author was visiting the Department of Computer
Science, University of Toronto. The research was partially supported by the CNPq – Brazil
under grant 203262/86-7.

III Workshop de Engenharia de Requisitos 93

1 Introduction

Often, software systems fail to properly support the organizations of which they are
an integral part. Primary reasons for such failures are the lack of proper under-
standing of the organization by the software developers of the system, also the fre-
quency of organizational changes which cannot be accommodated by existing soft-
ware systems (or their maintainers). Hence, requirements capture has been acknowl-
edged as a critical phase of software development, precisely because it is the phase
which deals not only with technical knowledge, but also with organisational, mana-
gerial, economic and social issues. The emerging consensus is that a requirement
specification should include not only software specifications but also business models
and other kinds of information describing the context in which the intended system
will function (Erikson and Penker, 2000). Consequently, there is a need for modeling
and analysis of stakeholder interests and how they might be addressed, or compro-
mised, by various system-and-environment alternative structures. Indeed, the Unified
Method has suggested the following archetypal workflow for requirements capture
(Jacobson et al.,1999):

� List candidate requirements,
� Understand system context,
� Capture functional requirements,
� Capture non-functional requirements
However, the production of high quality specifications is not easy. Usually the cli-

ents do not exactly know what they want and sometimes the requirements may not
reflect the real needs of the clients. It is common for requirements to be incomplete
and/or inconsistent.

Recent research on requirements engineering has drawn an important distinction
between early phase requirements capture and late phase requirements capture (Yu,
1997). Early phase requirements activities are typically informal and address organ-
isational or non-functional requirements. The emphasis is on understanding the
motivation and rationale that underlie system requirements. Late phase requirements
activities usually focus on completeness, consistency, and automated verification of
requirements.

The Unified Modeling Language (Booch et al., 1999) is well suited for late-phase
requirements capture. It facilitates the production of a requirement document, to be
passed on to developers, so that the resulting system would be adequately specified
and constrained in a contractual setting. However, UML is ill equipped for early
requirements capture because it can not represent how the intended system meets
organisational goals, why the system is needed, what alternatives were considered,
what the implication of the alternatives are for the various stakeholders, and how the
stakeholders’ interests and concerns might be addressed. What is required to cap-
ture such concerns is a framework that focuses on the description and evaluation of
alternatives and their relationship to the organisational objectives behind the soft-
ware development project (Mylopoulos et al., 1999a). We argue that the i* frame-
work (Yu and Mylopoulos, 1994), is well suited for early-phase requirements cap-

94 WER2000

ture, since it provides for the representation of alternatives, and offers primitive
modeling concepts such as those of softgoal and goal.

Hence, our contention is that UML alone is not adequate to deal with all different
types of analysis and reasoning that are required during the requirements capture
phases. Instead, we advocate the use of two complementary modeling techniques, i*
and UML. To model and understand issues of the application and business domain
(the enterprise) a developer can use the i* technique which allows a better descrip-
tion of the organisational relationships among the various agents of a system as well
as an understanding of the rationale of the decisions taken. For the functional re-
quirements specification, the developer can rely on UML, or if formality is required,
the precise Unified Modeling Language (pUML) (Evans and Kent, 1999), annotated
with constraints described in OCL (Warmer and Kleppe, 1999).

In this paper we present the transition from early (informal) descriptions in i* to
late (precise) requirements in pUML. This constitutes a conceptualization activity
within which a developer might make use of domain knowledge partly expressed in
descriptions of the organization, and partly in existing requirements specifications.

This paper reports on work that aims at enriching the modeling power of UML.
Section 2 introduces the language used for the early requirements description,
namely i* technique. In section 3, we provide some means for transforming i* mod-
els into precise specifications in pUML/OCL. Late requirements specification is
described in Section 4. Section 5 reviews some related work, while Section 6 con-
cludes the paper with a summary of its contributions. Throughout the paper, a small
CD store example is used to illustrate how the requirements process iterates between
the early and late requirements specification.

2 Using i* for Early Requirements Capture

In this section we will review the main concepts of the i* technique (Yu, 1997). i*
offers a modeling framework that focuses on strategic actor relationships. Usually,
when we try to understand an organization, the information captured by standard
modeling techniques (DFD, ER, Statechart, etc.) focuses on entities, functions, data
flows, states and the like. They are not capable of expressing the reasons (the
“why’s”) of the process (motivations, intentions and rationales). The ontology of i*
(Yu, 1998) caters to some of these more advanced concepts. It can be used for: (i)
obtaining a better understanding of the organisational relationships among the vari-
ous organisational agents; (ii) understanding the rationale of the decisions taken; and
(iii) illustrating the various characteristics found in the early phases of requirements
specification. The participants of the organisational setting are actors with inten-
tional properties, such as, goals, beliefs, abilities and compromises. These actors
depend upon each other in order to fulfil their objectives and have their tasks per-
formed. The i* technique offers two models: The Strategic Dependency (SD) model,
and the Strategic Rationale (SR) model.

III Workshop de Engenharia de Requisitos 95

2.1 The Strategic Dependency Model

The Strategic Dependency model consists of a set of nodes and links connecting
them, where nodes represent actors and each link indicates a dependency between
two actors. The depending actor is called depender, and the actor who is depended
upon is called the dependee. Hence, an SD model consists of a network of depend-
ency relationships among various actors, capturing the motivation and the rationale
of activities. i* distinguishes four types of dependencies. Three of these related to
existing intentions – goal dependency, resource dependency and task dependency,
while the fourth is associated with the notion of non-functional requirements, the so
called softgoal dependency. In a goal dependency, an agent depends on another to
fulfil a goal, without worrying how this goal will be achieved. In a resource depend-
ency, an agent depends on another agent to provide a physical resource or informa-
tion. In a task dependency, an agent depends on another to carry out a task. A soft-
goal dependency is similar to a goal dependency, except that a softgoal is not pre-
cisely defined. In i* we can also model different degrees of dependency commitment
on the part of the relevant actors (open, committed, or critical). We can also classify
actors into agents, roles and positions. An agent is an actor with concrete physical
manifestations (a person or a system). A role is an abstract characterization of the
behaviour of a social actor within some specialized context, domain or endeavor. A
position is a set of roles typically played by one agent. Finally, i* supports the analy-
sis of opportunities and vulnerabilities for different actors (Yu and Mylopoulos,
1994).

Suppose a situation in which a Client wishes to buy CDs and goes to a specialized
store because its services are of good quality and it claims to have most (if not all)
available titles in stock. If a client cannot find his/hers preferred title, the shop can
happily place an order for it and notify the client upon its arrival. The shop has
decided to improve its services by commissioning a new software system (SmartCD)
to handle orders as well as providing an online catalogue (it would be so conven-
ient!). In the Figure 1, we have the Strategic Dependency (SD) model of the CD
store case study.

At this early stage of requirements capture we have identified three actors: Client,
Store and SmartCD. This last actor indeed corresponds to the system to be devel-
oped, handling orders, notifications of CD arrivals and providing the online cata-
logue. The dependencies between the Client and the Store actor can be fond in Fig-
ure 1. The Client depends on the Store for getting the CD (resource dependency).
However, he/she wishes the services to be of good quality (softgoal Quality[Service])
and the store to maintain a good stock of CDs (softgoal Good variety). Of course
these goals are not yet precisely defined at this early stage, hence the use of soft-
goals. Turning to the relationship between actors Client and SmartCD, we notice
that one of the goals for introducing the online system is to enable browsing facili-
ties (goal dependency Browse Catalogue). In fact, the store may stock thousands of
CDs, making it difficult (or even impossible) for a customer to manually search all of
them. In the (unlikely) situation that a CD is not on stock, the SmartCD actor will
be able to handle orders online (the system will inform what and how it should be

96 WER2000

done, hence task dependency Order new CD). This feature is much awaited, since
filling orders manually (through a sales person) is time consuming. Of course, when
the (ordered) CD arrives, the Client will be notified as soon as possible (actually
there is a pre-defined procedure for dealing with it, hence the task dependency Notify
CD Arrival). The Client expects the access to software system to be fast (softgoal
Fast[Access]) and to use it to keep the stock updated (task Update Stock). Last but
not least, the Store actor also has some expectations on the commissioned SmartCD
system. It relies on the software system to process internet order (goal Internet Or-
der) and to control its stock (task Update Stock).

Fig. 1. Strategic Dependency Model

2.2 The Strategic Rational Model

The second model of the i* technique is the Strategic Rationale Model (SR). It is
used to: (i) describe the interests, concerns and motivations of participants process;
(ii) enable the assessment of the possible alternatives in the definition of the process;
and (iii) research in more detail the existing reasons behind the dependencies be-
tween the various actors. Nodes and links also compose this model. It includes the
previous four types of nodes (present in the SD model): goal, task, resource and soft-

III Workshop de Engenharia de Requisitos 97

goal. However, two new types of relationship are incorporated: means-end that sug-
gests that there could be other means of achieving the objective (alternatives) and
task-decomposition that describes what should be done in order to perform a certain
task.

In Figure 2 we use SR notation to detail the Store and SmartCD agent. Due to
space limitation we now only comment some aspects. An interested reader can find a
fuller description of the approach in (Alencar, 1999).

Fig. 2. Strategic Rationale Model

The store is interested in attracting (new and old) clients (expressed by task node
To Attract Customers). Several strategic decisions were taken in consideration and
as a result the task was decomposed into five aspects (expressed by a task-
decomposition link):

� The need to offer reasonable prices (captured by softgoal Good Price). Two
alternatives are considered for meeting this objective: to offer discount on se-
lected items (softgoal Discount Price) or obtaining good deals by buying large
quantities of popular CDs (softgoal Volume Purchase[High]),

� To need to establish a courteous relationship between the store staff and its
clients (represented by softgoal Friendly staff). This is considered to be a way
of meeting the quality of service expected by the client.

� To define standard procedures for delivering CD (expressed by sub-task De-
livery),

� To be able to maintain a good stock of CDs (captured by sub-task Maintain
Stock). This will also require the updating of the online information system.

98 WER2000

Hence the task dependency Update Stock between the Store and SmartCD
actors.

� To handle internet sales (captured by sub-task Sales By Web), which depends
on the adequate software system, hence the goal dependency Internet Order
between the Store and SmartCD actors.

After some considerations, it has been agreed that the task of maintaining the
stock needs to be further decomposed:

� The overall objective is to have all available titles on stock (captured by goal
Have all titles). If this is met, certainly the client will be very pleased (see the
softgoal Good Variety between Client and Store actors),

� Buying new titles (expressed by a sub-task Buy new releases),
� Making sure that popular CDs are re-stocked (expressed by a sub-task ‘Re-

plenish’).
The SmartCD represents the information system that will help the store to accom-

plish some of its tasks strategic objective, namely to attract customers (see Figure 2).
The system can be composed into various modules or sub-actors including: inven-
tory, financial and the internet sales module (see Figure 2). These actors have some
strategic dependencies each other.

The Internet Sales agent depends on the Financial agent to process the payment
of the CDs bought by some Client for example, to verify the customer's bank infor-
mation or to contact with the administrators of credit cards. This dependencies is
expressed by the task dependency “Process Payment”. In the same way , the Inter-
net Sales agent depends on the Inventory agent to have the reports of the availability
of products in stock (the task dependency “Report on Stock”). The Client agent will
act basically on the Internet Sales agent. The Financial agent depends on the Inter-
net Sales agent to inform the data of the sales, for example, Client’s data, the pur-
chase value, payment form, local of delivery, amount and type of product sold. This
dependency is expressed by the task dependency “Report on Sales”. The Financial
agent also depends on the agent Inventory to inform update information of the avail-
able products in the stock (the task dependency “Update Stock”). Finally, the Inven-
tory agent depends on the Internet Sales agent to request information on the Store’s
stock of products (the task dependency “Process Query”).

At this point, we may stop the process of modeling the strategic dependencies of
the CD store. We are already capable of understanding some issues of the application
domain (the enterprise). Now, according to conventional software development tech-
niques, the elements of the dependencies such a goal, a task or softgoal need to be
operationalized before the end of late requirements analysis. We can then move to
provide a detailed (functional) specification of system.

3 From Early to Late Requirements

Late requirements focus on the functional and non-functional requirements of a
system-to-be, which will support the chosen alternative among those considered
during early requirements. To specify the late requirements, we adopt pUML (precise

III Workshop de Engenharia de Requisitos 99

UML) (Evans and Kent, 1999) which provides a precise denotational semantics for
core UML elements, such as: relationship, classifier, association, and generalization.
The interested reader can visit the pUML site (Precise UML Group, 2000) for a
complete description of the approach.

However, pUML diagrams alone are not sufficient for late requirement capture
because it does not provide for the specification of constraints, such as invariants,
preconditions and the like. For this task, we have adopted the Object Constraint
Language (OCL) (Warmer and Kleppe, 1999). OCL is a textual language, also part
of the Object Management standard, that can precisely describe constraints for object
oriented models.

Figure 3 shows the mapping of the CD Store model in i *, for a context class
model based on the guidelines presented below. That model is just an intermediate
model that serves as the basis for the class diagram of the system. It presents seman-
tics classes derived from the problem domain (Monarchi, 1992).

In the sequel we suggest six heuristics for transforming i* based early require-
ments models to pUML/OCL-based late requirements:
Guideline G1: Related to actors;
Guideline G2: Related to tasks;
Guideline G3: Related to resources;
Guideline G4: Related to goals and soft-goals;
Guideline G5: Related to tasks decomposition;
Guideline G6: Related to means ends links.

Guideline G1:
Actors in the i* framework, can be mapped to classes in pUML. OCL constraints

can be attached to the actor-generated classes.
In our case study (see Figure 1) there were three actors: Store, Client and

SmartCD. These actors can be mapped to the three classes shown in Figure 3.

Guideline G1.1:
Actor composition in i* corresponds to class aggregation in pUML.
In our CD Store case study (see Figure 1), the Strategic Dependency contained

three actors: Store, Client and SmartCD. In pUML (see Figure 3), CD Store class is
the aggregate of three composite classes.

Guideline G2:
Tasks in i*, are mapped to class operations in pUML.
Guideline G2.1:
A task dependency, between a depender and a dependee actor in the SD model,

corresponds to a public operation in the dependee pUML class.
In our case study (see Figure 1), the Store Actor depends on the SmartCD Actor

for updating its stock (task Update Stock). Similarly, the Client actor depends on the
SmartCD Actor for two tasks: ordering CDs (Order new CD) and receiving notifica-
tion of goods arrival (task Notify CD arrivals). Hence, in Figure 3 you can observe

100
WER2000

that the SmartCD pUML class will be responsible for supporting the three (public)
operations (Update Stock, Notify CD Arrival, Order New CD) .

Guideline G2.2:
A task in the SR model is mapped to a local operation in the corresponding pUML

class.
In our case study, see Figure 2, a key task for the Store actor was to be able to At-

tract Customers. This consists of three subtasks: to handle internet orders (Sales By
Web), to Maintain Stock and to deliver the CDs (Delivery). Maintaining stock in-
cluded obtaining the new releases (Buy new releases) and renewing items (Replen-
ish). Therefore the corresponding pUML class has five (local) corresponding op-
erations (see Figure 3).

Fig. 3. Context Class Diagram of the CD Store

Guideline G3:
Resources in i* are mapped as classes in pUML. A public attribute of the type

Boolean, indicates the availability of resource.

Store

+ Quality[Service]
+ Good variety
- Good Price
- Volume Purchase[High]
- Discount Price
- Friendly staff
- Have all titles

- To Attract Customers
- Sales By Web
- Maintain Stock
- Buy new releases
- Replenish
- Delivery

CD Store

Client SmartCD

+ Update Stock
…

+ Internet Order

…

CD

+ availability

Depender

Resource

Resource

Dependee

Inventory Financial Internet Sales

+ Report on Stock
+ Update Stock

+Process Payment
+Fast [Access]
+Security[Access]

+ Process Query
+ Report on Sales
+ Notify CD Arrival
+Order New CD
+Browse Catalogue
- Interact by Site
- Register Client
- Search CD
- Assistance to Client
- Fast Search
- Super Search

III Workshop de Engenharia de Requisitos
101

In our example, see Figure 1, Client actor depends on the Store Actor, to obtain a
CD resource. In Figure 3, we can observe that the CD class has been introduced to
represent the resource. A boolean attribute (availability) indicates if is the resource
is at hand.

Guideline G4:
Strategic goals and soft goals will be mapped to attributes of the type boolean and

enumerated type, respectively, in pUML classes.
Goals are well defined, hence it is always possible to establish if one has been ful-

filled or not. On the other hand, softgoals are not well defined. They can only be
“satisfied” to some degree. Hence, an enumerated type is better suited for their repre-
sentation in pUML/OCL, whose values represent different degrees of softgoal ful-
fillment.

Guideline G4.1:
Goals and soft goals dependencies in SD models are mapped to public boolean

and enumerated attributes, respectively, of the dependee pUML class.
In our case study, the Client Actor expects that the Store Actor could have a good

stock (Good variety softgoal) and provide a good service (Quality[Service] soft-
goal). Therefore, in the corresponding pUML Store class, two enumerated attrib-
utes are added (see Figure 3).

Guideline G4.2:
Goals and soft goals dependencies in Strategic Rationale Models (SR), are

mapped to local boolean and enumerated pUML class attributes, respectively.
For example, in Figure 2, we have that the Store actor has a well defined goal (to

Have all Title), and four ill defined objectives or softgoals: to offer Good Price, to
have Volume Purchase [High], to give Discount Price, and to have a Friendly staff.
In Figure 3 we observe that these extra attributes have been included to Store
Class.

Next guideline deals with task. Operations in pUML can be used to describe tasks
performed by an actor. If we need to provide a more precise account of the opera-
tion, we can rely on OCL to specify its pre and post conditions. However, in the i*
framework tasks can be decomposed into sub-task, sub-goal, sub-softgoal and sub-
resource.

Guideline G5:
Task decomposition is represented by pre and post-conditions (expressed in OCL)

of the corresponding pUML operation.
The pre-condition is the conjunction (AND OCL connector) of sub-tasks pre-

conditions.
The post-condition is the conjunction (AND OCL connector) of all: (i) sub tasks

post-conditions; (ii) resource Boolean attributes; (iii) goal Boolean attributes (iv)
soft-goal enumerated attributes.

102
WER2000

Fig. 4. Task decomposition in OCL

Consider for example, the task To Attract Customers (Figure 2). It is decomposed
into three sub-tasks (Delivery, Maintain Stock and Sales By Web) and two sub-goals
(Good Price and Friendly staff). Let us use the OCL assertions pre-Subtask and post-
Subtask to indicate generic pre and post-conditions of a sub-task. Moreover, assume
that the OCL assertion value indicates one of the possible values of the enumerated
type (posit, negat, undef,) associated to a soft goal. Figure 4 shows the corresponding
OCL description.

When we work with the later requirements we can refine the pre and post condi-
tions of the three operations: Delivery, Maintain Stock and Sales by Web. This ac-
tivity is typical of later phase of the development process. Hence, we can suggest
some conditions for these operations as you can see in the Figure 5.

The SR models also provides for several types or means-end link. The “end” can
be a goal, task, resource, or softgoal, whereas the “means” is usually a task (GT, TT,
RT and ST links). Sometimes it is also useful to have means-end hierarchy of soft-
goals or goals (SS and GG links).

Fig. 5. Pre and Post Conditions Estimated

Guideline G6:
Means end-analysis is represented by OCL disjunctions of all possible means

achieving the end.

Guideline G6.1(SS and GG Links):
If the end is a (soft) goal and the means are (soft) goals than the disjunction of

the means values implies the end value.
In our case study (see Figure 2), there are two means of offering reasonable prices

Negotiating discounts based on high volume purchase (softgoal Volume Pur-

Store:: To Attract Customers
pre: pre-Delivery and pre-Maintain Stock and pre-Sales By Web
post: GoodPrice = ‘value’ and Friendly staff = ‘value’ and

post-Delivery and post-MaintainStock and post-Sales By Web

Store:: To Delivery
pre: delivery address and payment
post: delivered CD

Store:: To Maintain Stock
pre: quantity >= “value”
post: CD in stock

Store:: To Sales By Web
pre: site on line
post: increaseded sales volume

III Workshop de Engenharia de Requisitos
103

chase[High]) or by promoting sales (softgoal Discount Price). Either way the end
goal (softgoal Good Price) is achieved. In the Figure 6 the corresponding OCL
representation is presented.

Fig. 6. Means-end analysis

Guideline G6.2 (GT, RT and ST Links):
If the end is either a goal, resource or softgoal and the means is a task than the

post-condition of the means task implies the value of end goal (boolean) attribute,
resource (boolean) attribute or softgoal (enumerated) attribute.

In our case study these means-end links did not occur.

Guideline G6.3 (TT Link):
If the end is a task and the means are tasks then the disjunction of the post-

condition of the means task imply the post-conditions of the end task.
In our case study this means-end link did not occur.
Of course not all concepts captured in the early requirements phase will corre-

spond to software system models. The models do not have a one-one relationship;
many elements of the organisational model are not part of the software model, since
not all of the organisational tasks require a software system. Many tasks contain
activities that are performed manually outside the software system, and so do not
become part of the software system model. Likewise, many elements in the software
model comprise detailed technical software solutions and constructs that are not part
of the organisational model. Nonetheless, as we shall see, pUML/OCL also can be
used to represent this information.

So far we have been able to identify a context class diagram for problem at
hand. Now we can proceed to give some more details of the software system to be
developed.

4 Late Requirements

As shown in subsection 2.2, the SmartCD actor represents the information system
that will help the store to accomplish some of its tasks strategic objective, namely to
attract customers (see Figure 2). The system was decomposed into three modules or
sub-actors including: inventory, financial and the internet sales module.

Due to space limitation we will concentrate on Internet Sales Module, since it is
related to the Sales By Web task, shown in the strategic rationale model of Figure 2.
It is part of the system responsible for the process of sales through the Internet. We
will consider the context class diagram of Figure 3 as the starting point of our dis-
cussion.

Store
Volume Purchase [High]=’value’ or Discount Price = ‘value’

implies Good Price = ‘value’

104
WER2000

The SmartCD represented by the Internet Sales Module will interact with the cli-
ents through a site. This site allows the visitors to search for CDs, see information
about pop stars and news about the musical events.

There are two ways for a client to search for a CD: the fast and super search. In
the fast mode the visitor informs the name of the album, of the artist, or of the music.
In the super search the objective is to help those that still do not know which title to
buy. For that super search type the following options are available: name of the al-
bum or of the music, the styles (Pop, Rock, Rap, Reggae, Jazz, etc.), the recording,
the repertoire (national or international) and the release time.

Assistance to clients can be provided upon request by e-mail or through a FAQ
page. The FAQs (Frequentely Asked and Questions) contains answers for the most
common questions. If the visitor does not find the appropriate answer he/she can
fill in form (including the subject, name, number of the purchase request) and sub-
mit it. Upon receipt, an on-line sellers will answer the question.

A visitor (if not already a client) would have to register in order to use the sys-
tem. The register operation is available through a page where the client supplies
its personal data (complete name, identification no. , gender, birthday), an access
name (login), a password, a note (to help to recollect the password), its complete
address (street, number, neighborhood, city, state and zip code), residential and
commercial telephone, e-mail, the address for delivery (street, number, neighbor-
hood, city, state, zip code, telephone for contact) and the payment form. In particular
we are conceiving two forms of payment: credit card or direct debit in checking
account. For the payment by credit card it is necessary the title-holder's name, the
type of the credit card, the number of the card and validity of the card. For the direct
debit in checking account it is necessary the title-holder's name, the name of the
bank, the number of the agency and the number of the checking account. If neces-
sary the client can later revise his/her personal information. For reasons of security
the client can choose to fax or e-mail the personal information.

The site offers to its clients special services, for example: security in the transac-
tions and personalized attendance. For the sake of total security the customers’ data
are stored in a safe and isolated server (not connected to the Internet), with restricted
access to authorized employees. SmartCD will use a safe communication protocol
(SSL - Secure Sockets Layer). Client profile can also be provided. It consists of
client's preferences such as musical styles (Pop/Rock, Blues/Jazz, Infantile,
Samba/Pop,...), artists or favorite groups and the desire or not of receiving informa-
tion on promotions, releases, etc.

Based on these late requirements, a revised UML class diagram can be obtained
(see Figure 7). Some classes, attributes and methods represented in the fig. 3 can be
used in a direct way while others can be refined. The model of the fig. 7 display the
part of the class model of the SmartCD module. Note that classes CD, Inventory
and Client present in fig. 3 are also represented in fig.7. The method Update Stock
of the class Inventory in fig.3 corresponds to the methods removeCD and insertCD of
the class Inventory in fig.7.

III Workshop de Engenharia de Requisitos
105

Fig. 7. Class Diagram of the SmartCD with WEB Module

5 Related Work

The area of Requirements Engineering (van Lamsweerde, 2000) has developed
several novel techniques for early requirements capture (Boman et al., 1997),(van
Lamsweerde et al., 1998). Bubenko emphasizes the need to model organizations and

CD

code
albumTitle
style
….

newCD
...

Music

songTitle
artist
audio
letter
....

Order

status
dateOrder
dateDelivery
address

Payment Form

Credit Card

name
type
number
validate

Checking Count

name
bank
accountNumber

Client

Attendance

subject
orderNumber
e-mail
message

name
sex
login
password
address
...

register
verifiyPassword
alterData
fastSearch
superSearch
orderCD
...

credit
debitSSL

Inventory

report
removeCD
insertCD
...

Sales

report
....

notifyCDArrival

106
WER2000

their actors, motivations and reasons (Boman et al., 1997). In his work, enterprise
modeling and requirements specification are based on the notion that a requirements
specification process, from a documentation point of view, implies populating (in-
stantiating) five interrelated sub-model, representing areas of knowledge of the or-
ganization, which include an Objectives Model, an Activities & Usage Model, an
Actors Model, a Concepts Model, and an Information Systems Requirements Model.
Since the models are informal, or at best semi-formal, only some verification can be
performed automatically, such as syntactical correctness and connectedness.

Another related work is the requirements modeling framework for manufacturing
systems (MS) presented in (Petit,1999). It relies on two major ideas: a multi-
formalism approach, combining several languages into a coherent formalism, and a
component-based modeling approach. The modeling framework proposed combines
the Albert II, i* and CIMOSA languages. The combination is achieved through
meta-modeling and the definition of a set of mapping rules that establish a corre-
spondence among some of the concepts of the three formalisms.

In the KAOS framework (van Lamsweerde et al., 1998) goals are explicitly mod-
eled and simplified (reduced) through means-end reasoning until it reaches the agent
level of responsibilities. KAOS provides a multi-paradigm specification language
and a goal-directed elaboration method. The language combines semantic nets for
conceptual modeling of goals, requirements, assumptions, agents, objects and opera-
tions in the system; temporal logic for the specification of goals, requirements, as-
sumptions and objects; and state-based specifications for the specification of opera-
tions. Goals are reduced through means-ends reasoning to arrive at responsibilities
for agents. The modeling of agents is specificational and prescriptive. Since agents
are assumed to conform to prescribed behavior, one cannot easily analyze dependen-
cies for opportunities and vulnerabilities. On the other hand, i* models offer a
number of levels of analysis, in terms of ability, workability, viability and believabil-
ity. These are detailed in (Yu97).

However, agents are expected to behave as prescribed. This feature makes it diffi-
cult to analyze strategic relationships and implications in KAOS.

Another important issue related to early phase requirements capture is the repre-
sentation of qualities attributes, such as accuracy, performance, security, modifiabil-
ity, etc. In (Chung et al., 2000) a comprehensive approach for dealing with non-
functional requirements - NFR is presented. Structured graphical facilities are of-
fered for stating NFRs and managing them by refining and inter-relating NFRs,
justifying decisions, and determining their impact. A current research topic is the
extension of traditional Object-Oriented Analysis to explore the alternatives offered
by the non-functional goal-oriented analysis, which systematizes the search for a
solution which characterizes early phases or requirements analysis, rationalizes the
choice of a particular solution, a relates design decisions to their origins in organisa-
tional and technical objectives (Mylopoulos et al., 1999b).

Although UML has been used mainly for modeling software, recent proposals
have used it for describing enterprise and business modeling. For example, (Erik-
son and Penker, 2000) claims that UML is a suitable language for describing both
the structural aspects of business (such as the organization, goal hierarchies, or the

III Workshop de Engenharia de Requisitos
107

structure of the resources), the behavioral aspect of a business (such as the proc-
esses), and the business rules that affect structure and behaviour. In (Marshal, 2000)
UML is used, from a business perspective, to describe the four key elements of an
enterprise model: purpose, processes, entities and organization. The challenge is to
transfer the information available in the (early) business models to the (late) soft-
ware requirements models.

6 Conclusion

In this paper, we have suggested that requirements capture has to be done at different
levels of abstraction (ranging from the early phase to the late phase requirements).
Furthermore, we argue that UML alone is not adequate to deal with all different
types of analysis and reasoning that are required during the requirements capture
phases. Instead, we advocate the use of two complementary modeling techniques, i*
and a precise subset of UML.

To model and understand issues of the application and business domain (the en-
terprise) a developer can use the i* framework which allows a better description of
the organisational relationships among the various agents of a system as well as an
understanding of the rationale of the decisions taken. For later requirements capture
we suggest the use of pUML, a subset of UML which has a well defined semantics.
Annotations in OCL can also be deployed for describing constraints on the models.

We believe that each language has its own merits for supporting requirements
capture. But as long as different techniques are used, then a key issue is the devel-
opment of an integrated framework to support and guide the interplay of requirement
captures activities at the various levels, and to support traceability and change man-
agement. Indeed, the guidelines presented in the paper are important steps in this
direction. They can help to map the descriptive, early requirements model of the i*
technique into a prescriptive, late requirements model expressed in pUML/OCL.

Of course not all concepts captured in the early requirements phase will corre-
spond to software system models. The models do not have a one-one relationship;
many elements of the organisational model are not part of the software model, since
not all of the organisational tasks require a software system. Many tasks contain
activities that are performed manually outside the software system, and so do not
become part of the software system model. Likewise, many elements in the software
model comprise detailed technical software solutions and constructs that are not part
of the organisational model. Nonetheless, pUML/OCL also can be used to represent
this information.

Further research is still required to handle some structuring concepts found in the
i* framework, such as agent, role and position. To improve the integration of organ-
izational and functional requirements Use Cases diagrams can also be considered
(see Santander and Castro, 2000). Some real industrial case studies are also ex-
pected. Work is underway to provide some tool support for the mapping. The tool
will import organizational requirements specification produced by the OME toolset
and generate the corresponding pUML business model.

108
WER2000

References

Alencar, F.: Mapping Organizational Modelling into Precise Specification (In Portuguese).
Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil, Ph. D. Thesis
(1999)

Boman, M., Bubenko, J., Johannesson, P. Wangler, B.: Conceptual Modeling. Prentice Hall
Series in Computer Science (1997)

Booch, G., Jacobson, I. Rumbaugh, J.: Unified Modeling Language User Guide. Addison-
Welsley Object Technology Series (1999)

Chung, L., Nixon, B., Yu, E., Mylopoulus, J.: Non-Functional Requirements in Software
Engineering. Kluwer Publishing (2000)

Erikson, H., Penker, M.: Business Modeling with UML: Business Patterns at Work. OMG
Press John Wiley & Sons (2000)

Evans, A., Kent, S.: Core Meta-Modelling Semantics of UML: The pUML Approach.
UML’99 – The Unified Modeling Language: Beyond the Standard – The Second Interna-
tional Conference. Eds. Robert France and Bernhard Rumpe. Fort Collins, CO, USA
(1999) 140-150

Jacobson, I., Booch, G. Rumbaugh, J.: Unified Software Development Process. Addison
Weley Object Technology Series (1999)

Marshal, C.: Enterprise Modeling with UML: Designing Sucessful Software through Business
Analysis. Addison-Wesley Object Technology Series (2000)

Mylopoulos, J., Chung, L., Yu, E.: From Object-Oriented to Goal-Oriented Requirements
Analysis. Communications of the ACM, 42(1): (1999a) 31-37

Mylopoulos, J., Chung, L., Liao, S., Wang, H., Yu, E.: Extending Object-Oriented Analysis to
Explore Alternatives. Submitted for publication (1999b)

Monarchi, D. et. al.: A Research Typology for Object-Oriented Analysis and Design. Comuni-
cations of the ACM, 35 (1992) 35-47

Petit, M.: Formal Requirements Engineering of Manufacturing Systems: A Multi-Formalism
and Component-Based Approach. Computer Science Departament University of Namur,
Namur, Belgium, Ph. D. Thesis (1999)

Precise UML Group. PUML get by Internet url: http/www.cs.york.ac.uk/puml (2000)
Santander, V., Castro, J.: Desenvolvendo Use Cases a partir de Modelagem Organizacional

(In Portuguese). To Appear in III Workshop of Requirement Engineering (2000)
van Lamsweerde, A., Darimont, R., Letier, E.: Managing Conflicts in Goal-Drivel Require-

ments Engineering. IEEE Transaction on Software Engineering, Special Issue on Inconsis-
tency Management in Software Development (1998)

van Lamsweerde, A.: Requirements Engineering in the year 00: A Research Perspective.
Invited paper to ICSE’2000. To appear in Proc. 22nd International Conference on Software
Engineering, Limerick, (2000)

Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with UML.
Addison-Wesley Object Technology Series (1999)

Yu, E., Mylopoulos, J.: Understanding ‘Why’ in Software Process Modeling, Analysis and
Design. Proceedings Sixteenth International Conference on Software Engineering, Sor-
rento, Italy (1994)

Yu, E.: Towwards Modelling and Reasoning Support for Early-Phase Requirements Engi-
neering. Proceedings of IEEE International Symposium on Requirements Engineering –
RE97 (1997)

III Workshop de Engenharia de Requisitos
109

Yu, E.: Why Agent-Oriented Requirements Engineering. Proceedings of the 4th International
Workshop on Requirements Engineering: Foundations of Software Quality, Pisa, Italy. E.
Dubois, A.L. Opdahl, K. Pohl, eds Presses Universitaires de Namur (1998) 15-22

