
Abstract security patterns for requirements specification

and analysis of secure systems

 Eduardo B. Fernandez
1
, Nobukazu Yoshioka

2
, Hironori Washizaki

3
, and Joseph

Yoder
4

1Dept. of Computer Science and Engineering, Florida Atlantic University, USA
ed@cse.fau.edu

2GRACE Center, National Institute of Informatics, Tokyo, Japan nobukazu@nii.ac.jp
3Waseda University, Tokyo, Japan washizaki@waseda.jp
4The Refactory, Inc, Urbana, IL, USA joe@joeyoder.com

Abstract. During the requirements and analysis stages of software develop-

ment, the primary goal is to define precise requirements rather than being con-

cerned with the details of software realizations. Security is a semantic aspect of

applications and their constraints on the application should de described at this

moment. From a security point of view we only want to indicate which specific

security controls are needed, rather than getting involved with low-level design

and implementation details. Therefore, at these stages, it is useful to have a set

of patterns which define abstract security mechanisms. These patterns should

specify only the fundamental characteristics of the security mechanism or ser-

vice, not specific software aspects. We present the concept of Abstract Security

Pattern (ASP), which describes a conceptual security mechanism that realizes

one or more security policies able to handle a threat or comply with a security-

related regulation or institutional policy. We present a detailed example of an

ASP. We relate ASPs to each other using pattern diagrams as well as to Securi-

ty Solution Frames and tactics. Finally, we discuss their value for defining secu-

rity requirements and for building secure systems.

1 Introduction

When solving a problem, it can be useful to start from an abstract, conceptual solu-

tion, before we get involved with implementation details, which may just confuse us

and because of the possibility of solving more than one problem in the same way.

Building a software application is solving a problem. In the requirements and analysis

stages of software development we are trying to make the problem precise, we are not

concerned with software aspects. Security is a quality aspect that constrains the se-

mantic behavior of applications (by indicating restrictions), so the requirements stage

is the development stage to address it, but we only want to indicate which specific

security controls are needed, not their implementation. For example, in bank applica-

tions we only want to specify the semantic aspects of accounts, customers, and trans-

actions with their corresponding restrictions. In the case of the bank, we need to spec-

ify that customers are the only ones who can perform transactions on their own ac-

counts and similar type of constraints. At this stage, it appears useful to provide a set

of patterns (or other artifacts) which define abstract security mechanisms that can

describe these restrictions. These patterns should specify only the fundamental char-

acteristics of the mechanism or service, not specific software aspects. We introduce
1

here the idea of Abstract Security Pattern (ASP), which describes a conceptual secu-

rity mechanism that realizes one or more security policies able to handle (stop or mit-

igate) a threat or comply with a security-related regulation or institutional policy.

Most works on security patterns [1, 17, 18] emphasize concrete patterns which solve

security problems at given architectural levels or units, e.g., Secure Virtual Address

Space (VAS) in operating systems [7]. In fact, we have not seen any work on patterns

where this abstraction level is explicitly considered. While this separation is implied

in the original patterns of the GOF [9], they did not develop their possibilities. We

develop here the concept of ASP based on the definition above and we show some

examples of them. The common context of all Abstract Security Patterns is the prob-

lem space of the corresponding applications or domain models for some knowledge

areas. We can relate ASPs to each other using pattern diagrams as well as to Security

Solution Frames and tactics. Security Solution Frames (SSFs) are sets of patterns

(vertically and horizontally related) that correspond to a specific concern of a solu-

tion, e.g. authorization [20].

Some of the ASPs correspond to basic security mechanisms, e.g., Access control

(Authorization and Reference Monitor), Security Logger/Auditor, and Authenticator.

Others specify more detailed aspects, e.g. Access Control/Authorization models in-

clude the Access Matrix, Role-Based Access Control (RBAC), and Multilevel models

[17]. Starting from ASPs, along the lifecycle of a complete application we apply a

hierarchy of patterns going from abstract security patterns to platform-oriented ver-

sions of these patterns and their code realizations.

ASPs should not be confused with patterns that describe basic principles of good

security design, e.g. Single-Point-of-Access [24]. ASPs correspond to application

concepts, to be realized by computational mechanisms, they do not describe princi-

ples. However, as we show here, they can be used effectively in conjunction with

patterns that describe principles. In the requirements stage we can specify what secu-

rity controls we need in each use case and in the conceptual model of the analysis

stage we add the corresponding ASPs.

In summary, our contributions include:

• Development of the concept of ASP in detail by means of a complete example.

• Description of the relationships of ASPs to other ASPs and to SSFs.

• Showing the value of ASPs in the requirements and analysis stages by enumer-

ating possible uses.

Section 2 presents some background, while Section 3 discusses the nature of ASPs

and presents examples of them. Section 4 relates ASPs to SSFs, while Section 5

1 We actually introduced the idea in a two-page paper [6] but did not develop its properties.

shows how these patterns can be used. Section 6 discusses related work. The paper

ends with some conclusions in Section 7.

2 Security patterns and Security Solution Frames

A security pattern is a solution to the problem of controlling (stopping or mitigating) a

set of specific threats through some security mechanism or to implement some securi-

ty policy or regulation, defined in a given context [7, 17]. This solution resolves a set

of forces which constrain it and define guidelines for the solution, e.g. “the solution

must be transparent to the users”. The solution is usually expressed using UML class,

sequence, state, and activity diagrams (although we usually don’t need all these mod-

els). A set of consequences indicate how well the forces were satisfied by the solu-

tion; in particular, how well the attacks were handled or a regulation was satisfied. An

implementation section provides hints on how to use the pattern in an application,

indicating what steps are needed and possible realizations. A section on related pat-

terns indicates other patterns that complement the pattern or that provide alternative

solutions.

Security patterns can be considered architectural patterns because they usually de-

scribe global software architecture concepts, e.g., do we need authentication between

two units in a distributed system? They can also be seen as design patterns because

security can sometimes be considered an aspect of a software subsystem. Abstract

security patterns are in effect a variety of analysis patterns [8]. An analysis pattern

describes a semantic aspect of an application, e.g., the characteristics of accounts [5].

For example, the Security Logger in [18] emphasizes the implementation aspects of

this pattern, so this is a design pattern. The patterns in [7] are either ASPs or architec-

ture patterns. The Security Logger/Auditor in [7] is an ASP because it emphasizes the

fundamental functions of this pattern and not its implementation.

Security Solution Frames (SSFs) are sets of patterns (vertically and horizontally re-

lated) that correspond to a specific aspect of a solution [20]. The idea is to group to-

gether all the patterns that consider a type of solution; a Secure Channel SSF would

collect patterns that are used to build secure channels such as Symmetric Cryptog-

raphy, Asymmetric Cryptography, Digital Signature, and similar. Different levels of

abstraction define a vertical structuring while different concerns define a horizontal

association.

3 Abstract Security Patterns (ASPs)

An ASP is a security pattern that describes a conceptual semantic restriction in a do-

main which can be a defense to a threat or follow a regulation, with no implementa-

tion aspects. An ASP describes the essential functions that must be present to handle a

threat or regulation in an implementation-independent way. For example this is the

Intent section of an Authenticator pattern as described in [7] (slightly improved):

“When a user or system (subject) identifies itself to the system, how do we verify that

the subject intending to access the system is who it says it is? Present some infor-

mation that is recognized by the system as identifying this subject.”

Authentication handles the threat that an intruder could enter a system and access

information he should not see. It is clear that there are many ways to perform this

authentication, that go from manual identification, as done in voting places, to purely

automatic ways, as when accessing a web site. Authentication as an abstract function

requires a basic sequence of activities:

1. The subject presents a request to enter a system indicating its identity

2. The system requires some proof of identity

3. The subject provides such proof

4. The system grants the subject entrance to the system and may provide a proof of

authentication for further use

Concrete realizations of this sequence implement these steps in different ways but

they all must perform these activities. Figure 1 shows the class model of the Abstract

Authenticator, obtained from the realization of the activities above (as it would be

done for any object-oriented design). In this model class Subject indicates the active

entity that can ask for access to the system by issuing a request to class Authenticator.

This class consults class Authentication Information to decide if the subject is legiti-

mate. Class Authentication Information includes a set of whatever information is

needed to authenticate users, e.g. a list of passwords, a set of fingerprints, or similar.

Dynamic models describe the use cases “Register a subject” and “Request access”.

The class models of the concrete patterns derived from an ASP must include all the

classes of the ASP from which they were derived plus classes needed to handle new

aspects required by the specific environment. For the same reason, there may be new

or modified attributes and operations in the classes derived from the ASP.

Subject

*

requestAuthent

id

Proof_of_

Identity

Authenticator
* 1

<<create>>
Authentication

Information

1

1

verify

*

1

Fig. 1. Class diagram of the Abstract Authenticator pattern (from [7])

Figure 2 shows the class model of the Credential pattern. The Credential pattern

includes the complete Abstract Authenticator plus several other classes that define its

environment, the Principal corresponds to the Subject, the Certification Authority

creates credentials, and the Credential includes a set of Attributes. The verification of

the validity of the Credential is performed differently that in the corresponding ASP.

In general, if Ci= set of classes in the ASPi, Cci= set of classes in a concrete pattern

derived from ASPi, and Cnew= new classes in concrete pattern Cci, we have: Cci= Ci U

Cnew

Fig. 2. Class diagram of the Credential pattern (from [7])

We show relationships between patterns using pattern diagrams [3] where rounded

rectangles indicate patterns and the directed arcs indicate the contribution of a pattern

to the other pattern, e.g. the Authenticator pattern authenticates access to the entity in

Figure 5. We can draw pattern generalization hierarchies showing several levels in

one diagram as in Figure 3. The class diagram of Figure 1 must be included in all the

more specific patterns derived from it. The Distributed Authenticator only applies to

distributed environments and its solution includes additional classes to consider the

peculiarities of this environment. Credentials (Figure 2) are special types of authenti-

cators used in distributed systems [7], and their varieties include X.509 Certificates,

SAML Assertions, and Tokens. The package Authenticator includes the classes Au-

thenticator and Authentication Information from Figure 1. Class Principal corre-

sponds to the Subject of Figure 1. Credential corresponds to the Proof_Of_Identity of

<< create>>

CertAuthority

name

authenticate

*

1

Principal

id

Credential

id

active

expirationDate

validate

Authenticator

Authorizer

Attribute

(name, value)

*

*

*

1..*

getCredential
authenticatePrincipal

requestAccess

getRights

getResource

Figure 1 which in this case is created by the Certification Authority and validated by

the Authenticator. Authorizer is a pattern used to control access to resources by the

principal [7]. In other words, this diagram combines elements of authentication and

authorization.

The context, which defines the environment where the pattern applies and any

conditions for its application, is one of the main determinants of the difference of a

pattern with another in a hierarchy. In general, the context of a pattern includes the

context of its descendants: Ci Cj, where i precedes j in the hierarchy. For example,

the context of an Abstract Authenticator applies to any domain while the context of a

Distributed Authenticator applies only to distributed systems, and the context of an

X.509 certificate applies only to distributed systems that follow this standard. Their

threats are specific realizations of the abstract pattern's threats or are new threats due

to the extra elements in the class diagram (classes or attributes).

TokenSAMLX.509

Distributed
Authenticator

Credential

Centralized
Authenticator

Password Biometric Card -based

Authenticator

Fig. 3. Pattern diagram for the authentication hierarchy

The Problem section of the Abstract Authenticator could be stated as: How can we

prevent unauthorized users from accessing our system? By system we mean an infor-

mation system, a cyber-physical system, or even a physical system. A malicious at-

tacker could try to impersonate a legitimate user to have access to her resources in the

system. This could be particularly serious if the impersonated user has a high level of

privilege. How do we verify that the user intending to access the system is legitimate?

The following forces apply to its possible solution:

• Closed system. If the authentication information presented by the user is not

recognized, there is no access.

• Registration. Users must register their identity information so that the system

can recognize them later.

• Flexibility. There may be a variety of individuals (users) who require access to

the system and a variety of system units with different access restrictions. We

need to be able to handle all this variety appropriately or we risk security expo-

sures.

• Dependability. We need to authenticate users in a reliable and secure way. This

means a robust protocol and a high degree of availability. Otherwise, users may

fool authentication or enter when the system authentication is down.

• Protection of authentication information. Users should not be able to read or

modify the authentication information. Otherwise, they can give themselves ac-

cess to the system.

• Simplicity. The authentication process must be relatively simple or the users or

administrators may be confused. User errors are annoying to them but adminis-

trator errors may lead to security exposures.

• Reach. Successful authentication only gives access to the system, not to any

specific resource in the system. Access to these resources must be controlled us-

ing other mechanisms, typically authorization.

• Tamper freedom. It should be very difficult to falsify the proof of identity pre-

sented by the user.

• Cost. There are always tradeoffs between security and cost, more security can

be obtained at a higher cost.

• Performance. Authentication should not take a long time or users will be an-

noyed.

• Frequency. We should not make users authenticate frequently. Frequent authen-

tications waste time and annoy the users.

Note that there are no implementation-related aspects in these forces, i.e. they de-

scribe security requirements for the solution which complements its conceptual class

model. In fact, these are part of the corresponding application requirements and they

apply to any system where access should be restricted only to specific subjects, in-

cluding physical systems. Concrete versions of this pattern would add aspects related

to their specific context. For example, a Password-based Authenticator would add

(among others):

• Strength. A password must be hard to discover, even for an attacker who has ac-

cess to the password file and enough computational power.

• Protection of Authentication Information. The password file must not be acces-

sible to the users.

The forces of the ASP may appear under more specific forms in a concrete pattern,

e.g., in the example above, protection of authentication information takes a specific

form. New forces can be introduced; in this example “Strength” is a new force, spe-

cific to passwords (or it can be considered an example of tamper freedom).

The reverse of what happens in classes is true about forces and consequences, the

forces in a concrete pattern include those of the abstract pattern plus new forces (and

their consequences) due to the more specific environment. The forces can be speciali-

zations of the abstract forces. That is: fj fi, where i precedes j in the hierarchy.

Because an ASP is a prototype for its concrete realizations, it may be worthwhile

to make its description as careful or detailed as possible. We can try to formalize the

solution section of the ASP by adding OCL to its UML models [22], or by describing

this solution in a formal language (instead of its UML description). For example, [15]

considers patterns as parameterized templates or types that are instantiated in applica-

tions and provide a formal description of this template. This formalization must be

balanced with the need to keep the generality of the pattern and the freedom to im-

plement it in many ways. A formal description may constrain possible implementa-

tions or make additional assumptions. Also, a pattern is more than its solution, the

forces and consequences for example, are very important for its correct application.

Further examples of ASPs are shown in [7], including: Authorizer, Role-Based

Access Control, Reference Monitor, Circle of Trust, Identity Provider, Abstract IDS,

and Abstract VPN. We do not present more here for lack of space. Patterns in general

are obtained by abstracting concepts of several implementations from real systems

(best practices); ASPs are obtained by abstracting the properties of several concrete

patterns or directly from the study of real systems. There is no algorithm to produce

patterns or ASPs, abstraction is a human activity which depends on the experience

and ability of the pattern builder.

4 Relation of ASPs to other ASPs and to Security Solution

Frames

The standard associations between classes can be applied to patterns in general, and to

ASPs. Figure 3 shows ASPs related to each other by generalization, e.g. an X.509

certificate “is a” credential. Figure 5 shows directed associations between patterns

that describe peer associations between ASPs. Patterns can be associated also by ag-

gregation [16], where an ASP is composed of other ASPs.

Security Solution Frames (SSFs), are solution structures that encapsulate and organize

security patterns [21]; they realize security requirements. SSFs define horizontal and

vertical pattern structures. Horizontal structures correspond to peer-related patterns

that complement each other and define different facets of a root security policy, while

vertical structures are hierarchies of pattern specializations. SSFs provide guidance

for designers in applying security patterns from an abstract conceptual to a concrete

design level. ASPs can be used to characterize Security Pattern Families which are

collections of related patterns (Figure 4). ASPs define the roots of these hierarchies,

where each lower level is a pattern specialized for some specific context. For exam-

ple, a SSF for Identity Management includes a family of Authentication patterns,

which in turn includes Application-driven Authentication, Authentication Server,

Password-based Authentication, and others. This family is defined by the Abstract

Authenticator. Abstract Authenticator, Application-Driven Authentication, and Pass-

word-Based Authentication are in the same vertical family.

Alternatively, we can draw separate graphs for each level to correlate patterns in

different families. This type of diagram is useful when we want to understand or ex-

plain a complete system; for example, when building a banking application we can

correlate all the security patterns needed to protect accounts.

Security

Solution

Frame

Security

Pattern

Family

1

ASP
1

Fig. 4. From SSFs to ASPs

5 Use of ASPs

Figure 5 shows how abstract patterns are used to define security controls for a func-

tional entity. “Functional Entity” represents some functional unit in a conceptual

model and the basic security services are described by patterns Authenticator, Access

Control (showing its fundamental models), and Security Logger/Auditor. These pat-

terns solve the problems described below.

• Authenticator [7]. Described in Section 2.

• Authorizer (Access Matrix) [7, 17]. Describe who is authorized to access

specific resources in a system, in an environment in which we have resources

whose access needs to be controlled. It indicates for each active entity, which

resources it can access, and what it can do with them.

• Reference Monitor [7, 17]. How do we enforce authorizations when a process

requests access to an object? Define an abstract process that intercepts all re-

quests for resources from processes and checks them for compliance with author-

izations.

• Role-Based Access Control (RBAC) [7]. Describe how to assign rights based on

the functions or tasks of people in an environment in which control of access to

computing resources is required and where there is a large number of users, in-

formation types, or a large variety of resources.

• Multilevel Security pattern [7]. How to decide access in an environment with

security classifications?

• Attribute-Based Access Control (ABAC) [14]. Allow access to resources

based on the attributes of the subjects and the properties of the objects.

• Security Logger /Auditor [7]. How can we keep track of users’ actions in order

to determine who did what and when? Log all security-sensitive actions

performed by users and provide controlled access to records for audit purposes.

Access
Matrix

Access
Control

Authenticator

authenticates
access controls

access

Functional
Entity

logs
access

Security
Logger

RBAC Multilevel ABAC

Fig. 5. Basic security services

Not all functional units require these security services, we must determine by enu-

merating threats which services are actually required [2]. Regulations and institution

policies may also dictate the use of additional security mechanisms. However, we

should not add in each entity security all possible mechanisms just in case they might

be needed. Adding too many security mechanisms results in systems which:

• Are overly complex, with unnecessary redundancies, which bring administrative

problems..

• Have a high performance overhead, because of redundant checks.

• Are costly, because most security mechanisms are COTS components and they

have to be bought separately.

There is also a fundamental difference between adding design patterns and adding

security patterns to an application. Adding design patterns is optional and is intended

to improve some aspect such as flexibility or extensibility. Adding security patterns,

on the other hand, intends to make the application secure and we must apply patterns

to cover all security vulnerabilities or the application will not be secure. Security pat-

terns don’t improve code; their purpose is to make a complete architecture secure.

Security is not based on local transformations as when using design patterns but re-

quires a global view of the whole architecture. By showing the needed security mech-

anisms and when combined with SSFs, ASPs can simplify the job of the designer who

has now a guide to decide what security mechanisms are needed according to the

possible threats.

Other possible uses of ASPs include:

• Combine them with patterns describing security principles or good general de-

sign principles. For example, the Abstract Authorizer can be combined with

Need-to-Know [7]; Single Point of Access [24] can be combined with Firewall

[17].

• Check for security coverage in a design. One of the problems with protecting

complex systems is that it is hard for the designers to see if all the high-level se-

curity threats have been considered. This is much easier when we work at the

application level of abstraction, we can enumerate all threats and find the corre-

sponding security patterns [2].

• Guide the search for new patterns (pattern mining). An abstract pattern defines a

range of patterns and one can see if corresponding patterns exist at all the lower

levels, including different environments, e.g. web services or cloud computing..

• Serve as abstract prototypes for similar concrete patterns. Starting from an ab-

stract pattern it is easy to see what security constraints must at least be applied at

a specific architectural level.

• Serve as ways to connect and relate different families of patterns. For example,

a Communication Channel can use Intrusion Detection.

• There are patterns for enterprise models to define global security concerns [17].

These patterns include among others: Asset Valuation, Threat Assessment, Se-

curity Needs Identification, and others. ASPs can be used to implement their

concerns because they are expressed in terms of application functional activities.

• We can make generalization hierarchies with patterns [Was08], and define pat-

terns which are more and more concrete. For example, starting from a Commu-

nication Channel pattern, a Secure Channel denotes a channel where some secu-

rity measure has been applied, and a Cryptographically-Protected Secure Chan-

nel defines a more specific secure communication. We can build SSFs this way.

• We can build Domain models or Reference Architectures using ASPs.

6 Related work and discussion

As indicated earlier, there is a concept of abstract pattern in the original patterns of

the GOF [9], but they did not develop their possibilities because they were not con-

cerned with the analysis stage, their work is about good coding practices (design and

implementation stages)

Other varieties of security patterns include:

• Security design patterns. The Open Group used the style and template of

[Gam94] to build security patterns [1].

• A group at CERT took a more literal approach and built secure design patterns

[4], where they added security to several of the patterns of [9].

• Jackson’s Problem Frames [11], have been used as the basis for patterns for se-

curity requirements [10].

• Mouratidis uses Secure Tropos, an approach to support multiple views of securi-

ty, including organizational and external aspects [12].

• Security usability patterns. Patterns oriented to build good user interfaces for

security [13].

 The approach of [10] and [11] has in common with ASPs that they emphasize the

basic security requirements of the system. However, their patterns are described in a

totally different way, they do not follow the standard pattern structure and use differ-

ent concepts and notation. The advantage of standard patterns and also of ASPs is that

they are seamless with respect to lifecycle approaches such as the Rational Unified

process (RUP) [16] and use similar notation and concepts.

The patterns in [12] describe enterprise activities and their security constraints and

thus they also express application constraints. ASPs are more detailed than those pat-

terns and are very close to standard patterns as those in [9] and [3]; after defining

them in the analysis stage the transition to design is straightforward: the design stage

just needs to refine them and express them in terms of software artifacts, something

not easy to do with the patterns in [10] and [12]. The security usability patterns can

complement ASPs by providing interface requirements.

7 Conclusions

From the enumeration of their possible uses in Section 5 we can see that ASPs have

several potential advantages, including providing insight into the nature of security

patterns, helping define the early stages of a methodology to build secure systems,

and for pattern mining [7]. To fulfill their advantages, we need a good catalog of

ASPs that can be used by designers to define secure conceptual models that address

crosscutting concerns. We already have a good number of ASPs [7], but we need to

separate clearly ASPs from concrete security patterns and build a specialized catalog.

As indicated earlier, there is no algorithm to build ASPs. It takes experience and

abstraction ability to build them. Pattern builders build catalogs and designers use the

catalogs to build systems. SSFs are sets of appropriate patterns for some requirement

and facilitate the application of patterns by designers who are not expected to be secu-

rity specialists. Although it is possible to apply some level of formalization to ASPs

(to their solutions), they are not formal artifacts and there is no formal validation for

them.

 ASPs are not implementable, they are abstract models and cannot be evaluated

with respect to security or performance through experimentation or testing. A pattern

is a paradigm to guide implementation of new systems or evaluation of existing sys-

tems. Their evaluation must be based on how well they represent the relevant con-

cepts of the systems they describe, how well they handle abstract threats, how com-

plete they are, how precise they are, how they can be applied to the design or evalua-

tion of systems, and how useful they are for other relevant functions. The ultimate

validation of ASPs will come from their use by practitioners in actual designs. For

now, we need to write a few complete design examples to illustrate their use and

make it easier for practitioners to adopt them. The catalog would be organized using

SSFs which facilitate their use.

We also need to rediscover some ASPs which have been published in software-

oriented descriptions, and rewrite them to emphasize their fundamental abstract prop-

erties. In recent work we extended the idea of ASP to define abstract threats [19].

Acknowledgements
We thank the referees for their detailed and useful comments.

References
1. B. Blakeley, C. Heath, and Members of the Open group Security Forum): Technical

Guide: Security Design Patterns, 2004,

http://www.opengroup.org/bookstore/catalog/g031.htm

2. F. Braz, E. B. Fernandez, and M. VanHilst, "Eliciting security requirements through mis-

use activities" , Procs. of the 2nd Int. Workshop on Secure Systems Methodologies using

Patterns (SPattern'08). In conjunction with the 4th International Conference on Trust,

Privacy & Security in Digital Business (TrustBus'08), Turin, Italy, September 1-5, 2008.

328-333.

3. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, and M. Stal., Pattern- oriented

software architecture, Wiley 1996.

4. Chad Dougherty, Kirk Sayre, Robert C. Seacord, David Svoboda, Kazuya Togashi, Secure

Design Patterns, Tech. Report CMU/SEI-2009-TR-010, March 2009; Updated October

2009.

5. E. B. Fernandez and Y. Liu, "The Account Analysis Pattern", Procs. of Euro PLoP (Pat-

tern Languages of Programs).

http://www.hillside.net/patterns/EuroPLoP/submissions-2002.html

6. E. B. Fernandez, H. Washizaki, and N. Yoshioka, “Abstract security patterns", Position

paper in Procs. of the 2nd Workshop on Software Patterns and Quality (SPAQu'08), in

conjunction with the 15th Conf. on Pattern Languages of Programs (PLoP 2008), October

18-20, Nashville, TN.

http://hillside.net/plop/2008/papers/ACMVersions/spaqu/fernandez.pdf (last retrieved Oc-

tober 4, 2011)

7. E. B. Fernandez, Security patterns in practice: Building secure architectures using soft-

ware patterns, Wiley Series on Software Design Patterns, April 2013.

8. M. Fowler, Analysis patterns -- Reusable object models, Addison- Wesley, 1997.

9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns –Elements of reusable

object-oriented software, Addison-Wesley 1994.

10. D. Hatebur, M. Heisel, and H. Schmidt, “A pattern system for security requirements engi-

neering”, Procs. of ARES 2007, 356-365.

11. M. Jackson, Problem Frames: Analyzing & structuring software development problems,

Addison-Wesley, 2001.

12. H. Mouratidis, M. Weiss, and P. Georgini, “ Modelling secure systems using an agent-

oriented approach and security patterns”, Int. Journal of Soft. Eng. and Knowledge Eng.,

vol, 16, No 3, 2006, 471-498.

13. Jaime Muñoz Arteaga, Ricardo Mendoza, Miguel Vargas, Jean Vanderdonckt, F. Alvarez,

“A methodology for designing information security feedback based on User Interface Pat-

terns”. Advances in Eng. Software, vol. 40, No 12, 2009, 1231-1241.

14. T. Priebe, E. B. Fernandez, J. I. Mehlau, and G. Pernul, "A pattern system for access con-

trol", in Research Directions in Data and Applications Security XVIII, C. Farkas and P.

Samarati (Eds.), Procs of the 18th. Annual IFIP WG 11.3 Working Conference on Data

and Applications Security, Sitges, Spain, July 25-28, 2004.

15. Indrakshi Ray, R.B.France, N. Li, G.Georg, “ An aspect-based approach to modeling ac-

cess control concerns”. Inf. & Soft. Technology, (9): 575-587 (2004).

16. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Reference

Manual, Addison-Wesley, Boston, Mass., 1999.

17. M. Schumacher, E. B. Fernandez, D. Hybertson, F. Buschmann, and P. Sommerlad, Secu-

rity Patterns: Integrating security and systems engineering", Wiley 2006.

18. C. Steel, R. Nagappan, and R. Lai, Core Security Patterns: Best Strategies for J2EE, Web

Services, and Identity Management, Prentice Hall, Upper Saddle River, New Jersey, 2005.

19. A. Uzunov and E. B. Fernandez, “An Extensible Pattern-based Library and Taxonomy of

Security Threats for Distributed Systems”- Special Issue on Security in Information Sys-

tems of the Journal of Computer Standards & Interfaces, 2013

http://dx.doi.org/10.1016/j.csi.2013.12.008

20. A. Uzunov, E. B. Fernandez, K. Falkner, “A software Engineering Approach to Authori-

zation in Distributed, Collaborative Systems using Security Patterns and Security Solution

Frames”, submitted for publication.

21. A. Uzunov, K. Falkner, and E. B. Fernandez, “ A comprehensive pattern-driven security

methodology for distributed systems”, accepted for the 23rd Australasian Software Engi-

neering Conference (ASWEC2014), Sydney, Australia, 2014.

22. J. Warmer and A. Kleppe, The Object Constraint Language (2nd Ed.), Addison-Wesley,

2003.

23. H. Washizaki, E. B. Fernandez, K. Maruyama, A. Kubo, and N. Yoshioka, “Improving the

classification of security patterns”, Procs. of the Third Int. Workshop on Secure System

Methodologies using Patterns (SPattern 2009).

24. J. Yoder and J. Barcalow, "Architectural patterns for enabling application security". Procs.

PLOP’97, http://jerry.cs.uiuc.edu/~plop/plop97 Also Chapter 15 in Pattern Languages of

Program Design, vol. 4 (N. Harrison, B. Foote, and H. Rohnert, Eds.), Addison-Wesley,

2000.

