
Model Interchange and Tool Interoperability in the i*

Framework: A Proof of Concept1

Daniel Colomer
1
, Lidia López

1
, Carlos Cares

1,2
, Xavier Franch

1

1Universitat Politècnica de Catalunya (UPC)

c/Jordi Girona, 1-3, E-08034 Barcelona, Spain

{ccares | dcolomer | franch}@essi.upc.edu, llopez@lsi.upc.edu
2Universidad de la Frontera (UFro)

Fco. Salazar 01145 Temuco, Chile

carlos.cares@ceisufro.cl

Abstract. Since the i* (i-star) framework was adopted by the requirements

engineering community, different groups have formulated variations of the

language proposed therein with the purpose of adapting the framework to the

specific needs of its users. Whilst this flexibility is helpful from many

perspectives, it poses some challenges, remarkably the difficulty of sharing a

common model knowledge base, and tool incompatibility. In earlier works, we

have formulated the iStarML interchange format as a mediator between these

different variations. In this paper, we present a particular experience we have

carried out, namely the interconnection of two existing tools, jUCMNav and

HiME. We have provided the adequate mappings to transform models that

correspond to the two metamodels adopted by these tools, we have identified

the conflicting cases in the transformation, and we have implemented the

mapping as import/export facilities in the tools. This case has not just an

intrinsic value as proof of concept (i.e., the ability of these two tools to

interchange models) but also sets the basis for a general solution to the i* tool

interoperability problem.

Keywords: i* framework, istar, i-star, model interchange, semantic interoperability,

tool interoperability, iStarML, jUCMNav, HiME.

1 Introduction

The i* (pronounced i-star) framework [1] is currently one of the most widespread

goal- and agent-oriented modelling and reasoning frameworks. It has been adopted by

several communities, and remarkably the requirements engineering community is one

of them.

Throughout the years, different research groups have formulated variations to the

language proposed in the i* framework (for the sake of brevity, we will name this

language “the i* language”). There are basically two reasons behind this fact:

1 This work has been partially supported by the Spanish project TIN2010-19130-002-01.

– The definition of the i* language is loose in some parts, and some groups have

opted by different solutions or proposed slight changes to the original definition.

The absence of a universally agreed metamodel has accentuated this effect [2].

– Some groups have used the i* framework with different purposes and thus

different concepts have arisen, from intentional ones like trust and compliance, to

other more related with the modelling of things, like service or aspect.

The adaptability of i* to these different needs is part of its own nature, therefore these

variations are not pernicious by themselves, on the contrary, language adaptability

may be considered one of the framework’s key success features. But on the other

hand, it poses several challenges to the community. Among them we address in this

work the problem of model interchange and its counterpart at the technological level,

tool interoperability, connecting two existing tools, exposing the difficulties we have

tackled and eventually overcome, whilst trying to fit everything in a reusable context

for future similar experiences. The selected tools are: our own i* modelling tool,

HiME; and an open source tool from the University of Ottawa, jUCMNav.

The rest of the paper is structured as follows. Section 2 presents the iStarML

format, the two tools involved in the experience and the adopted formal framework.

Section 3 aligns the metamodels of both tools with the iStarML metamodel. Section 4

defines the mappings between the metamodels of the tool and the iStarML

metamodel. Section 5 presents details on the implementation of the import/export

operations and shows the interoperability among the tools. Finally, Section 6 states

the conclusions and future work.

Basic knowledge of i* is assumed in the paper, see [1] and the i* wiki

(http://istar.rwth-aachen.de) for a thorough presentation.

2 Background

In this section we present the iStarML interchange format and the two tools we are

going to interoperate, jUCMNav and HiME.

2.1 iStarML

The iStarML proposal [3][4] was conceived to represent i* models coming from

different i* metamodels in an interoperable format. XML was chosen as interchange

language because it has become the de facto Internet interchange standard, with

available editing, visualization and processing technologies emerge everywhere.

The particular XML elements of iStarML were derived starting from the

metamodel proposed in [4] which aims to have an integrated view of the core

concepts existing on different i* variants. We distinguish different conceptual areas

which finally become the main tags of iStarML, and the variations of the concepts are

represented on the attributes of each element. In Figure 1 we illustrate the proposed

areas bound to the iStarML tags: actors (<actor>, area 1), intentional element

(<ielement>, area 2), dependency (<dependency>, area 3), boundary (<boundary>,

area 4), intentional element link (<ielementLink>, area 5), and actor link

(<actorLink>, area 6).

http://istar.rwth-aachen.de/

Fig. 1 iStarML Conceptual Areas from the i* Reference Metamodel

 2.2 jUCMNav

jUCMNav [5] is a graphical editor and an analysis and transformation tool for the

User Requirements Notation (URN) [6]. URN, approved as a standard by the

International Telecommunication Union (ITU-T) in 2008, is intended for the

elicitation, analysis, specification, and validation of requirements. It combines

modelling concepts and notations for goals and intentions and scenarios.

jUCMNav works over two different concepts and notations provided by URN:

GRL and UCM. The Goal-oriented Requirement Language (GRL) combines the

seminal i* Yu’s proposal with the NFR Framework [7] for supporting goal-oriented

modelling and reasoning about requirements, especially non-functional requirements

and quality attributes. Its tight integration with a scenario notation is one

distinguishing point with respect other proposals. Concerning jUCMNav, the clear

separation of model elements from their graphical representation enables a scalable

and consistent representation of multiple views/diagrams of the same goal model.

jUCMNav is available as an Eclipse plugin and it is mainly based on both the

Eclipse Modeling and the Graphical Editing Frameworks. These metamodel-oriented

technologies provide the developers with an easy method to implement constraints

and new functionalities on the desired metamodel.

2.3 HiME

HiME is a tool for editing classical i* models that remarkably has the ability to deal

with specialization between actors (is-a link) at the level of SR elements according to

[8]. It includes specific operations for declaring an actor as heir of another and then

stating the relationships between the intentional elements of both actors. The main

graphical feature that distinguishes this editing system from other similar tools is that

a model is not represented graphically following the symbols of the i* framework,

instead it is represented as a folder tree directory in a file system.

HiME has been developed using Java and the Rich Client Platform (RCP) for

Eclipse. Models in version v1.0 [9] were stored in a MySQL database. The current

version (v2.0) [10] has replaced the database by text files using the iStarML

interchange format to decrease deployment complexity and the models portability.

2.4 Theoretical framework

This interoperability experience is theoretically founded on the characterization of

translating models from one metamodel to another proposed by Wachsmuth in [11].

This approach deals with the problem of metamodel evolution which includes the

implications of adapting models to their corresponding metamodels. This framework

defines different semantic-preserving categories and matches them with specific

refactoring operations on metamodels. Therefore the translation problem would

correspond to a co-evolution of models derived from a metamodel transformation.

Although this framework was generated to deal with model co-adaptations in order

to prevent inconsistencies and “metamodel erosion” it does not lose generality if we

assume that we have two different modelling languages LA and LB, each one with its

own metamodel, let’s say A and B, and there are a set of refactoring operations R

which allow to get the metamodel B by applying R on A. Two main relationships

stem from this framework: (i) instance preservation, which means that the same

model can be an instance of metamodels A and B at the same time, and (ii) concept

preservation, which means that a specific concept existing on A, also exists (or has a

similar one) on B. Combining the possibilities of superset or subset of model

instances and concepts a categorization of different types of semantic-preservation is

obtained: (a) strictly semantic-preservation, when model instances are preserved as

are; (b) semantic-preservation module variation, when all instances can be translated

using a mapping function; (c) introducing semantic-preservation or eliminating

semantic-preservation, when the source and target set of concepts are different and

models lose (eliminating) some elements or they are not adequate (introducing) to the

target conceptual framework; (d) increasing semantic-preservation or decreasing

semantic-preservation, when the set of concept are the same but the set of model

instances are not because, due associations or constraints, there are more (increasing)

or less (decreasing) possible model instances on the target metamodel; and finally (e)

increasing or decreasing semantic-preservation module-variation, when is possible to

get the conditions expressed on (d) using mapping functions.

3 Aligning the jUCMNav and HiME Metamodels

Although the goal of this work is interconnecting jUCMNav and HiME, we do not

communicate both tools directly. Alternatively, we use iStarML: iStarML supports i*

tool interoperability by just aligning the metamodels of the two tools with only one

designated metamodel that acts as mediator, the iStarML metamodel. Therefore,

following these approach, in order to interconnect N i* tools with different

metamodels, we need just 2N mapping functions (from each metamodel to iStarML

and the other way round) instead of N(N-1) for all possible pairs.

We compare below the metamodels used in jUCMNav and HiME with respect the

iStarML metamodel, highlighting the differences (see Table 1). We use the iStarML

six designated areas (see section 2.1) to structure the information. Concerning the

jUCMNav metamodel (shown in Fig. 2):

– Actors. Only the generic type Actor is supported, the specializations Position,

Role and Agent are not included.

– Intentional elements. jUCMNav includes a special type of intentional element,

namely Beliefs (that is also present in other i* variants). However, in the

metamodel itself, beliefs are not intentional elements but separate graphic nodes.

– Dependencies. In jUCMNav, DependableNode is always an InternalElement.

Actors are not graphically linkable although the metamodel seems to be ready to

allow it. Therefore, actors must contain internal elements to attach the

dependency ends, in other words, if dependencies are defined, SR diagrams for

involved actors need to be elaborated.

– Intentional element links. jUCMNav offers the possibility of adding some

information on Contribution Links (quantitative contribution). This quantitative

value may vary between -100 and 100 (integer units) and jUCMNav offers a

mapping between these values and the qualitative ones which are the same than

those proposed by iStarML (excluding “and” and “or” contributions). jUCMNav

has only 2 specialization of Links, Contributions and Decompositions, instead of

3. On the other hand, there are 3 kinds of decompositions: AND (that

corresponds to iStarML’s Decomposition Link), OR (corresponds to MeansEnd

Link) and XOR (which does not match any iStarML Link).

– Actor links. Apparently jUCMNav does not support actor links (Relationship),

but in fact it allows representing a nested structure of actors which matches the

concept of is-part-of.

Concerning HiME, its metamodel is almost the same presented in Fig. 1, the reason

being that we have used the i* metamodel presented in [12] as a base and this is

almost the same metamodel used for defining the iStarML metamodel. Just to

mention that in HiME, Intentional Element Links (area 5) are not between

IntentionalElements, they are between InternalElements. This difference yields to the

restriction of not having IntentionalElements linked if they do not belong to an actor

(i.e., dependums cannot be linked). Concerning actors, HiME supports all the possible

links. But a word of caution needs to be given for specialization: the is-a relationship

between actors have a lot of implications in the models, namely correctness

conditions establishing which elements may be modified, deleted, moved around, etc.,

as established in [8].

Fig. 2. jUCMNav metamodel

Table 1. iStarML-based analysis of jUCMNav (abb., J) and HiMe (abb., H)

iStarML Areas jUCMNav HiME Semantic-preservation (s-p)

1: Actors
Only presents the general
concept of Actor

All the types of actors
are supported

J H strictly s-p

H J decreasing s-p

 module-variation

2: Intentional

Elements
All + Beliefs All

J H eliminating s-p

H J introducing s-p

3: Dependencies
Dependencies among

actors are not allowed
Fully supported

J H strictly s-p

H J eliminating s-p

4: Boundaries Fully supported Fully supported strictly s-p

5: Intentional
Element Links

– AND, OR and XOR
decompositions.

– Extra information on

contribution links
(quantitative values)

– Contributions to
softgoal And/Or not

supported

All links supported, but

only between

InternalElements

J H decreasing s-p
module-variation

H J increasing s-p module-
variation

6: Actor
Relationships

Only is-part-of All
J H strictly s-p

H J eliminating s-p

4 Defining the Mappings

In this section, we define the mappings between the two tools and the representation

under iStarML. These mappings will allow both tools to import and export i* models

from/to this format, and thus to share models. Of course the mappings need to take

into account the misalignments identified in Section 3. We classify the mappings

according to Wachsmuth’s framework (see Table 1, rightmost column).

4.1 Mappings jUCMNav iStarML

From the analysis made in Section 3, we may conclude that whilst HiME’s

metamodel is quite close to iStarML’s, the differences with jUCMNav are many and

this means that the mappings jUCMNav iStarML will be more complex to define.

For the different situations we face, we have identified three different behavioral

patterns when translating from one metamodel A to another metamodel B:

– Semantic-based: when we try to keep as much information as possible even if

some manipulations on the source model have to be made. Basically, for a

construction in A not supported in B, an equivalent combination of model

elements that are supported in B is proposed.

– Metadata-based: By following this behavior, we will keep the unsupported

information as metadata (in the case of iStarML, labels and tags), thus allowing

the user to keep all the knowledge of the source model. This option allows

keeping the information exactly as in origin, but then it requires some ad hoc

processing in the tool that will import the iStarML model.

– Conservative: we will simply ignore the unsupported constructs even if this

means information lost. This option may be chosen for simplicity or because the

semantic-based option is not possible and we do not want to use metadata.

The mapping from iStarML to jUCMNav deals with the following cases:

– Inexistence of types of actors. We opt by the semantic-based pattern, converting

each role, position and agent in the iStarML model into a generic actor.

– Dependencies among actors. We have used the metadata-based option, removing

just the dependency links and not the dependums themselves, that are kept.

Information about which actors are the depender and/or dependee is kept as

metadata, associated to the intentional element that represents the dependum. We

considered the option of keeping the dependency by “introducing” a new

intentional element in the actor(s) to connect the dependency links, but we

discarded it since we though it could introduce more problems that were solved.

– Means-end intentional links. Since this type of link does not exist in jUCMNav,

we convert them, using again the semantic-based pattern, into OR-

decompositions (according to the original Yu’s definition, means-end links

declare alternative means to achieve an end).

– Actor links different from is-part-of. We opt by the conservative pattern. In the

case of occupies, plays and covers this is clear from the inexistence of types of

actors. Considering is-a, since there is no counterpart in jUCMNav, it is not

possible to keep it.

From jUCMNav to iStarML we find:

– Beliefs, xor-decompositions and quantitative information. We choose the

metadata-based pattern, since we do not see any semantic transformation that

allows preserving these jUCMNav constructions in the iStarML model.

– And- and or-decompositions. If the decomposed element is a softgoal we choose

the semantic-based pattern. In order to guarantee a certain degree of classic i*

proximity we translate these decompositions into and- and or-contributions.

Using the same criteria we will translate or-decomposed goals, tasks and

resources using means-end links. And-decomposed goals and resources will keep

the and-decomposition construct because no ambiguity exists in this case.

4.2 Mappings HiME iStarML

HiME models can be exported into iStarML without any kind of restriction, which

means that the mapping HiME iStarML is strictly semantic preserving. Concerning

importation, in the only case not covered by HiME, i.e. intentional element links

involving dependums, the option is discarding them, which means that the mapping

iStarML HiME is decreasing semantic-preserving. The iStarML optional value for

strengths is not optional in HiME, when it is not given, HiME assigns a configurable

default value (usually, committed) which means that preservation is module variation.

HiME adopts the conservative behavioral pattern for the elements not defined in its

metamodel with the aim of losing as few information as possible. For instance, if a

link between intentional elements is unknown, the intentional elements are included,

only the link is missing in the resulting model.

5 Implementation

In this section we present the changes needed in both tools to achieve the

interoperability between them, which obstacles have been found and how they have

been solved. We also present an example with models used to assess the right

interoperability between jUCMNav and HiME.

5.1 jUCMNav

jUCMNav offers 2 relevant extension points: URNExport and URNImport. For our

solution we created extensions for both URNExport and URNImport. In the case of

the Import functionality jUCMNav offers two kinds of implementations, one to

import an external file into a new .jucm file, and other to simply use an already

created one. We decided not to extend the second variant since we were concerned

that it could cause some confusion to the final user.

For both Export and Import algorithms we proceed step by step importing or

exporting the different groups of elements (actors, actor links, etc.) thus allowing us

to easily change, add or remove steps with little impact on the whole algorithm. As a

consequence, we are forced to read the input as many times as import/export steps and

in the worst case a second read will be necessary in order to complete containment

hierarchies and to collect graphical information. Therefore, the final algorithm is

quadratic in both cases, sacrificing some time efficiency for changeability.

In order to guarantee the correctness of the model to import, we use the XML and

iStarML parsers provided by the ccistarml package [13] and we also provide an error

digest containg all the warnings and errors occurred during the import/export process.

5.2 HiME

In the case of HiME, for both Export and Import (or Save and Load in v2, see Section

2.3) algorithms, the idea is visiting the model information sequentially and only once.

In the case of saving the model, all actors are visited and for each actor its intentional

elements. When all actors have been visited, dependencies have been read to be

saved. For actors, their intentional elements (nodes) are linked forming a graph,

therefore we have used a deep-first transversal algorithm to visit all of them and save

the information about the node and then the link to the related ones using a recursive

algorithm. For each actor, also its links to other actors are saved at the same time. For

reading models, the algorithm consists on reading the file sequentially. When some

element cannot be created, because it is related to other that is no already read, this

creation is postponed to the end of the process. At this point all elements are known,

so they can be related in a proper way.

The second version of HiME uses the XML and iStarML parsers provided by the

ccistarml package.

5.3 Testing interoperability between jUCMNav and HiME

Once the metamodels were aligned, the transformations defined, and the

import/export operations implemented, it was time to check the interoperability

between the two tools. We have designed some tests suites in the form of i* models

and explored their correct import and export. In this section we show one of these

examples, on patients and insurance companies, adapted from Yu’s thesis [1]. The

example has been slightly modified to fit the elements’ names to the lexical

conventions defined in RiSD methodology [14].

We have created models in both tools and then we have imported in the other one.

Fig. 3 shows a model created in jUCMNav (top) and the resulting model read from

HiME (bottom). The model imported in HiME has the following differences respect

to the original one:

– Some elements not included:

o Existence of Untreatable Diseases because HiME does not recognize beliefs

as a kind of intentional element.

o Links for decomposition of Get Treated into Follow Public Treatment and

Buy Private Insurance because HiME does not recognize xor-

decompositions.

o Quantitative -75 associated to the contribution link from Approve Treatment

to Fast because is not possible to add quantitative information to

contributions.

– The default value committed has been assigned to all strengths (this default value

is customizable through a configuration file).

– Or-decomposition for goal Be Well is read as a means-ends link.

– Or-decompositions for softgoal Profitable are read as contribution links with

value equal to OR.

Fig. 3. Model created using jUCMNAv (top) and the model read from HiME (bottom)

Fig. 4 shows the model created using HiME2 (top) and the resulting model imported

by jUCMNAv that has the following differences respect to the original one:

– All roles are read as generic actors because jUCMNav does not have actor types.

– is-a links from Physician and Medical Assessor to Medical Practitioner are lost

because jUMNav only supports is-part-of actor links.

– The is-part-of link from Medical Assessor to Medical Gabinet is kept but

represented as actor containment in jUCMNav.

– There are no dependency strengths because jUCMNav does not recognize them.

– Task-decompositions are kept as and-decompositions.

2 The HiME models shown in the figure has been created using OpenOME tool [15] because

HiME does not offer a graphical view for the model (critical strengths, not supported by

OpenOM have been added manually).

– For dependencies, just the dependums and links are included, which are

associated to an intentional element. When a dependency link is associated to an

actor in the original model, it is not added to the jUCMNav model because actors

are not graphically linkable to dependencies. But the unsupported information is

kept as dependum’s metadata. For example, Fig. 4 (bottom) shows the metadata

for the dependum Honest.

Fig. 4. Model created using HiME (top) and the model read from jUCMNav (bottom).

5.4 Evaluation

The interconnection of these two tools has fulfilled the objectives. We have

demonstrated the feasibility of tool interconnection and then model translation, with

some limitations that are inherent to the semantic mismatch between the two involved

metamodels; these mismatches have been classified using a well-known metamodel-

oriented semantic framework and in some cases strategies may be applied to solve the

mismatch.

From a more detailed point of view, and related to these two particular tools, we

mention two current limitations that need to be improved in future releases. First, as

shown above, our framework includes a package, ccistarml, for implementing the

import/export functionalities in any tool. The ccistarml current version is well

prepared for writing models, but not so well for reading them. For writing a model,

the tool only needs to explore the model and using ccistarml functions to create the

model for writing. When the model has to be read, the tool needs information about

the syntax of iStarML to create the model in the tool. For reading, only functions for

parsing the nodes information are offered, but not for structural constructions.

On the other hand, HiME does not support some peculiarities that appear in the

iStarML format: (i) Including more than one diagram in the same file. In this case,

HiME does not read any of the diagrams included in the file, (ii) Actor definition

inside another actor (<actor> tag inside another <actor> tag). This construction is one

of the two ways to represent the is-part-of actor link in iStarML. HiME only

recognizes actor links if they are defined using an <actorLink> tag, (iii) Last, it is

worth to mention that iStarML files also contain some information about graphic

layout. Given the hierarchal nature of HiME’s model representation, this information

is useless. Therefore this information is neither read nor generated by this tool.

Instead, jUCMNav represents the model graphically, so when there is no graphical

information the tool tries to layout the imported diagram. jUCMNav offers an

autolayout functionality but if this is not chosen, it will randomly distribute the

elements.

6 Conclusions and Future Work

In this paper we have explored the traslation of i* models from one reference

framework to another, represented both by metamodels. The translation has been

explored at the syntactic level by interconnecting two particular modeling tools

already available in the i* market, namely jUCMNav and HiME. We have also

depicted the semantic interoperability framework according to co-evolution and co-

adaptation theories by Wachsmut.

Although the paper has focused in these two particular tools, the process could be

replicated to any other pair of i* tools. The steps are the same than applied here: align

the two metamodels; study the different treatments needed to deal with these

constructs that differ among them; implement the import and export facilities in the

tools using the iStarML interchange format. Limitations come from the possibility to

map one concept from a metamodel to another.

The future work is centered on replicating this translation to other existing i* tools

whilst refining the semantic framework, allowing thus effectively to share techniques

and capabilities that are offered by these different tools under different variants.

References

1. Yu, E. Modelling Strategic Relationships for Process Reengineering. PhD Dissertation,

University of Toronto, 1995.

2. Franch, X. “Fostering the Adoption of i* by Practitioners: Some Challenges and Research

Directions”. Book chapter in Intentional Perspectives on Information Systems Engineering,

Springer Verlag, 2010.

3. Cares, C., Franch, X., Perini, A., Susi, A. “iStarML: An XML-based Model Interchange

Format for i*”. In Procs. 3rd i* Int. Workshop, CEUR Workshop Proceedings, 322, pp. 13-

16, 2008.

4. Cares, C., Franch, X., Perini, A., Susi, A. “Towards interoperability of i* models using

iStarML”. Computer Standards & Interfaces (CSI), 33, pp. 69-79, 2011.

5. The jUCMNav website. http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/

WebHome. Last access: 24/01/2011.

6. Mussbacher, G., Ghanavati, S., Amyot, D. “Modeling and Analysis of URN Goals and

Scenarios with jUCMNav”. In Procs. 17th IEEE International Requirements Engineering

Conference (RE), pp. 383-384, 2009.

7. Chung, L. et al. Non-Functional Requirements in Software Engineering. Kluwer

Academics, 2000.

8. López, L., Franch, X., Marco, J. “Defining Inheritance in i* at the Level of SR Intentional

Elements”. In Procs. 3rd i* Int. Workshop, CEUR Workshop Proceedings, 322,pp. 71-74,

2008.

9. López, L., Franch, X., Marco, J. “HiME: Hierarchical i* Modeling Editor”. Revista de

Informática Teórica e Aplicada (RITA), 16(2), 2009.

10. The HiME website. http://www.lsi.upc.edu/~llopez/hime/. Last access: 24/01/2011.

11. Wachsmuth, G. “Metamodel Adaptation and Model Co-adaptation”. In Procs. 21st Object-

Oriented Programming European Conference (ECOOP), pp. 600-624, 2007.

12. Cares, C., Franch, X., Mayol, E., Quer, C. “A Reference Model for i*. Book chapter in The

Social Modeling for Requirements Engineering Yu, E. et al. (eds.), The MIT Press, 2011.

13. Cares, C., Colomer D., CCIstarML Package,

http://www.essi.upc.edu/~gessi/iStarML/index.html. Last access: 24/01/2011.

14. Franch, X., Grau, G., Mayol, E., Quer, C., Ayala, C.P., Cares, C., Navarrete, F., Haya, M.,

Botella, P. “Systematic Construction of i* Strategic Dependency Models for Socio-

Technical Systems”. International Journal on Software Engineering and Knowledge

Engineering (IJSEKE), 17(1), pp. 79-106, 2007.

15. The Open OME Tool, https://se.cs.toronto.edu/trac/ome. Last access: 24/01/2011.

http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/
http://www.lsi.upc.edu/~llopez/hime/
http://www.essi.upc.edu/~gessi/iStarML/index.html
https://se.cs.toronto.edu/trac/ome

