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Abstract

Once an organization decides to develop a software
product line (SPL), one of the first activities that needs to be
done is to build a domain model. Here, commonalities and
variabilities are identified, as well as the particular charac-
teristics that products of the SPL will have. Although there
exist some methods proposed for domain modeling, they
are general and not specifically designed for scientific soft-
ware, let alone for meshing tools. Meshing tools are highly
complex software for generating and managing geometri-
cal discretizations. Due to this complexity, they have gen-
erally been developed by end users with ad-hoc methodolo-
gies and not applying well established software engineering
practices. Nevertheless, many meshing tools with varying
degrees of variability have been developed over the years,
making them a good application domain for SPL. This pa-
per proposes a systematic process for building the domain
model, specially suited for the case of a meshing tool SPL.
We formally define the structure of the domain model, the
process for building this model in a rigorous way, and we
apply it to produce a meshing tool domain model. Both, the
model and the process, are described and exemplified along
the paper.

1. Introduction

According to Northrop and Clements [22], a software
product line (SPL) is a set of software intensive systems
that share a managed set of characteristics, and that satis-
fies the needs of a particular market segment or mission,
being developed using a set of common core assets in a

preestablished fashion. These core assets include the prod-
uct line architecture, reusable software components, and
domain models, among others. In a SPL we can identify
two main technical stages [26]: domain engineering where
reusable core assets are developed, and application engi-
neering where particular products are built by combining
the assets already developed. Understanding and identify-
ing common and variable aspects play a central role during
the domain engineering stage. Commonalities are require-
ments that must hold for all products in the SPL, while vari-
abilities are requirements that may or may not be present in
a particular product, and as such define how SPL products
may vary [35].

In the context of SPL, domain analysis is the first step
within the domain engineering stage. It includes scop-
ing and domain modeling. Scoping consists of defining
which products are part of the SPL and which are not. Do-
main modeling is the process through which commonalities
and variabilities are identified, captured and organized in a
domain model with the purpose of characterizing the do-
main [25].

Meshing tools are sophisticated software due to the com-
plexity of the concepts involved and the large number of in-
teracting elements they manage. Meshing tools complexity
mainly relies on the components involved, as is the case for
most scientific computing software. Provided that meshing
tools are used in a variety of different application domains,
they may require slightly different functionality, algorithms
for implementing this functionality, data representation, or
format of the data used as input or output [23]. Also de-
pending on the application domain, it may be required to
have two or three dimensional meshes, each one using dif-
ferent types of basic modeling elements. For example, Fig-



ure 1 shows a triangulation surface mesh of a brain at the
left and an internal view of the associated volume mixed-
element mesh (compose of hexahedra, pyramids, prisms
and tetrahedra) at the right; this application is used for brain
surgery [19].

Figure 1. Modeling the brain

These tools have usually been developed with ad hoc
methodologies, focusing on attributes like performance in-
stead of reuse for building them. Without reuse in mind,
every new tool needs to be developed from scratch even
though it may involve algorithms already implemented and
data structures already designed, all of them also used and
tested. Other authors have done some efforts in the direc-
tion of reuse in the meshing tool domain [28, 29, 30, 31],
but it is not a common practice yet. It is necessary to count
on a reuse framework if the potential gains in productivity
and quality SPL promises are to be achieved.

According to Smith and Chen [29] and Bastarrica and
Hitschfeld-Kahler [1], most mesh generators can be ab-
stracted as: input information, calculate a domain dis-
cretization (mesh), refine and/or improve the mesh, and fi-
nally output the results. These shared steps have been iden-
tified as commonalities among all members of a meshing
tool family. On the other hand, variabilities may be seen
in two different ways: by including or excluding certain
steps in a mesh processing, or by providing alternative im-
plementations or algorithms for realizing the same chosen
functionality depending on the precise processing required
and its particular characteristics (performance, memory use,
amount and distribution of the mesh points, and scalability
factors for managing complex domains, among others).

We have developed several meshing tools [5, 11, 12, 13,
20] following the Object-Oriented paradigm. Even though
this paradigm promotes reuse, it has reached a point in its
development and use, that it is difficult to obtain higher
quality, lower cost, and shorter time in development than
it has currently achieved [10]. If we need to develop other
meshing tools for different needs, we can use the knowl-
edge obtained during past developments, reusing the ex-
isting core assets as source code, architectures, and docu-
mentation among others, and considering the existing com-
monalities and variabilities, all of them within an organized

framework such as that provided by SPLs.
In this paper we propose a process for building a do-

main model that is specially suited for the meshing tool
domain. It integrates lexicon, features, goals and scenar-
ios as a means for capturing the domain characteristics and
we organize them in a formal model. We provide a process
that organizes the way these elements are gathered and com-
bined into a unified domain model, as well as clear iteration
or termination conditions based on model consistency and
completeness. We develop a domain model for the meshing
tool SPL following the proposed process.

Some authors have already approached building meshing
tools with SPL concepts in mind [1, 2, 29, 30], but to the
best of our knowledge, none of them has focused on domain
model with a systematic process specially designed for this
particular domain. Even though there are other methods
for building a domain model, we decided to create our own
customized process because none of those available directly
applies for our domain. Some of them are general and need
tailoring [4, 17, 35], other ones are domain specific and need
adapting [21], and other ones are product oriented and they
need to count on many products already developed [3].

The main contribution of this paper is twofold: first, a
rigorous process for building the domain model, and sec-
ond, a formal domain model definition specially suited for
the meshing tool domain.

The rest of the paper is organized as follows. In Section 2
we provide the definition of the domain model, as well as
the proposed process for building it. Section 3 describes
the process applied and the domain model obtained for the
meshing tool SPL. Related work about both domain anal-
ysis methodologies in general and for developing meshing
tools in particular are discussed in Section 4. Finally, con-
clusions and future work are presented in Section 5.

2. Domain Model and Process

Our proposed domain model will include, as many other
proposals do, features, goals, scenarios and lexicon, along
with the relationships among elements of different kinds.
We define our domain model in Section 2.1, its formaliza-
tion in Section 2.2 and the process for building it in Sec-
tion 2.3.

2.1. Elements of the Domain Model

Our proposed domain model structure is based on fea-
tures, goals, scenarios and lexicon. The definition of fea-
tures, goals and scenarios are inspired in the work of Park
et al. [24].

The lexicon defines the domain vocabulary, and allows
a better and shared understanding for all stakeholders in-
volved in the domain [8]. Several other authors agree on



the need of counting on a lexicon in the development of the
SPL [7, 15, 18, 27, 29, 31, 35].

In the context of a product line, a goal is an objective of
the business, the organization or the system that some stake-
holder hopes to achieve with that product line. A scenario
is a possible behavior limited to a set of interactions with
the purpose of achieving some goals with the product line.
Thus, a scenario is generally composed of a sequence of one
or more actions corresponding to user or system interactions
with products of a product line. Features are characteristics
and abstractions of product functionalities, parameters and
data storages in a SPL visible for stakeholders, and thus they
can be viewed as effects achieved by some product behavior
(external or internal). A feature is an attribute of a system
that directly affects end-users [15].

2.2. Formalization of the Domain Model

For defining the elements that form part of our domain
model and their relationships we use Z schemas [32]. Z
schemas allow us to define elements that form part of a
model as well as the invariants in which they are involved.

We consider GOAL, FEATURE, ACTION, DESCRIP-
TION and CHAR as primitive types. We define SCENARIO
as a sequence of actions, and TYPEF as an ennumeration of
the three different types of features.

[GOAL, FEATURE, ACTION, DESCRIPTION]

SCENARIO == seq ACTION

TYPEF ::= GroupedFeature | SolitaryFeature
| RootFeature

Since features can be defined as mandatory (commonal-
ities), or optional and/or alternative (variabilities), we de-
fine Feature as a name and a type, as specified in the next
schema.

Feature
name : seq CHAR
type : TYPEF

The schema DomainModel defines the elements that
form part of our domain model. In this schema the variables
are Goals, Scenarios, Features, Actions and Lexicon. The
schema also includes the relationships between goals and
scenarios (By Scenario [a]), and between scenarios and
features (By Feature [b]); these relationships are inspired
by the work of Kaindl [14]. Notice that defining the Lex-
icon as a function of Feature to DESCRIPTION is a sim-
plification, since it would eventually be necessary to define
other concepts of the application domain besides features.
Defining the Feature Model just as a set of features is also

a simplification, but their structure neither affects the Do-
mainModel definition, nor its consistency specification.

DomainModel
Goals : P GOAL
Scenarios : P SCENARIO
Features : P Feature
Actions : P ACTION
Lexicon : Feature 7→ DESCRIPTION
By Scenario : GOAL↔ SCENARIO [a]
By Feature : SCENARIO↔ Feature [b]

Actions = ∪ ran s | s ∈ Scenarios [c]
dom Lexicon ⊆ Features [d]
dom By Scenario ⊆ Goals [e]
ran By Scenario ⊆ Scenarios [f]
dom By Feature ⊆ Scenarios [g]
ran By Feature ⊆ Features [h]

The constraints that any DomainModel must satisfy are
those invariants stated in the lower part of the schema.
Among them we find the following. The identified ac-
tions are those derived from already identified scenarios [c].
There could be features that are not part of the lexicon [d]
just because they have not been defined yet. Only those
goals, scenarios and features that have been identified as
part of the DomainModel can be related by the By Scenario
and By Feature relations [e,f,g,h].

Although we may have a transient inconsistent domain
model, at the end it needs to be consistent. The Consis-
tentDomainModel schema refines the prior one by adding
certain constraints. It includes the previous schema Do-
mainModel, and also includes the definition of another rela-
tionship (Attached [i]) between actions and features that are
necessary for fulfilling them.

ConsistentDomainModel
DomainModel
Attached : ACTION ↔ Feature [i]

dom Lexicon = Features [j]
dom By Scenario = Goals [k]
dom By Feature = ran By Scenario

= Scenarios [l]
ran By Feature = Features [m]
dom Attached = Actions [n]
ran Attached = Features [o]

Within a ConsistentDomainModel, all identified Fea-
tures are described in the Lexicon [j], all identified Goals
have a series of related scenarios [k], all identified Scenar-
ios contribute to a certain goal and may also be fulfilled with
the set of identified Features [l], and all Features contribute
to the fulfillment of at least one scenario [m]. Finally, all



identified Actions should be attached to at least one feature
[n], and all Features are attached to at least one action [o].
We will use these conditions for checking consistency, one
of the termination conditions of our proposed process.

2.3. Domain Model Construction Process

Figure 2 summarizes the products of the domain model
process and their relationships.

Optional
Alternative
Common

Development
Use

Lexicon

Action

given

refined

Business goal

Feature

achieved/achieve

fulfilled/enable

ScenarioGoal

composed

described/describerequire/required

Figure 2. Domain model artifacts

The business goal establishes the purpose for develop-
ing products as a family. This goal is unique for the whole
SPL, but there may be several particular goals. We distin-
guish two types of scenarios: development scenarios that
are those followed whenever a product of the SPL is built,
and use scenarios that are those followed by particular prod-
ucts once they are executed. Features are those data stor-
age, parameters or functionalities identified for the potential
products in the SPL; they may be either common (manda-
tory), optional or alternative. The lexicon involves terms
necessary for understanding the domain and they can be any
relevant thing into the domain.

With respect to the notation, we use a feature model
for specifying features following the notation proposed by
Czarnecki and Eisenecker [8], structured English for goals
and scenarios, and natural language for lexicon. Even
though the notations for goals, scenarios and lexicon are dif-
ficult to validate formally and automatically, they are used
because they are easy to work and understand for any stake-
holder, and previous training is not required.

Figure 3 shows an activity diagram for building the do-
main model. The domain expert(s) and the domain ana-
lyst(s) should interact in order to identify and specify goals,
features, scenarios, actions, and terms of the lexicon as
well as their relationships considering information from the
stakeholders (included domain expert and analyst), avail-
able components developed in the domain, external infor-
mation (e.g. emerging technology within a domain, market
information and literature) and systems information (e.g.
system documentation and existent systems developed in
the domain). Systems information is optional in the activ-
ity diagram, meaning that it is not necessary to count on

<<optional>>

Goals

Define

Lexicon

Define

Features

Define

Actions

Define

Scenarios

Define

Business Goal

Define

Information

:External

Knowledge

:Stakeholders’

Components

:Available

Information

:Systems

Relationships
Define

Domain Model
Build

:Domain Model

[Tentative]

Domain Model
Deliver:Domain Model

[Final]

Consistency
Check Check

Completeness

[else]

[consistent and complete]

Figure 3. Domain model process

it for building the domain model. It generally occurs in a
scenario where there are no products developed (or only a
few), and the development of the SPL starts from scratch.
Once these activities are done, the domain expert checks for
completeness by analyzing if the model elements captured
are enough for deeply understanding the domain and build-
ing all expected products. Meanwhile the domain analyst
checks for consistency by verifying that the domain model
satisfies all the consistency conditions indicated in Consis-
tentDomainModel schema, Section 2.2. If any of these con-
ditions (completeness or consistency) does not hold, then
the process iterates. Otherwise the domain model is ready
and we can proceed to the following steps of the SPL devel-



opment.
The process is influenced by the characteristics of the

meshing tool domain. This domain is stable, and thus it is
possible to count on domain experts that are familiar with
good software engineering practices. Also, there are sev-
eral pre-implemented components, already tested and with
appropriately documented interfaces so it would not be ex-
tremely difficult to identify features from them; in this way
features are naturally mapped to data storages, parameters
or functionalities. Finally, the binding time for variabilities
in meshing tools is fixed to design time, so it is not neces-
sary to apply a completely general domain model method,
but a much simpler one suffices.

Another important characteristic, that it is not exclusive
for the meshing tool domain but has influenced our domain
model process, is that we did not count on a large number of
tools already developed, before building the domain model.
That is why our process is intensive in the use of stakehold-
ers’ knowledge, external information and available compo-
nents, and does not rely much on the information of exist-
ing systems. As a result, our process is feature oriented,
and the feature model is our main artifact. Goals, scenarios
and actions are useful for supporting the rationale of how
the feature model was obtained. Furthermore, is known the
fact that a major advantage of discussing a system in terms
of features is that they bridge the gap between requirements
and technical design decisions [34], i.e. features focus on
the problem space and not on the solution space [8].

3. Domain Model for Meshing Tools

In this section, we apply the proposed process to build
the meshing tool domain model. We first introduce the Lex-
icon for understanding the domain. Then we obtain the
business goal and after that we define particular goals, some
scenarios and features. Several terms of the lexicon are
identified and defined. Some goals, scenarios and features
are related, but others are not. We proceed then with a sec-
ond iteration mainly because the feature model was found
to be incomplete. In the second iteration we advance in the
feature model.

The relationships among goals, features and scenarios
are stated in tables, so that consistency checks would result
easier. Only when the domain expert(s) and the domain an-
alyst(s) intuitively think that the model could be ready, they
proceed to check for termination conditions. Thus finally
our domain analyst checks for domain model consistency
using the constraints stated in the ConsistentDomainModel
schema, and the domain expert checks for completeness by
determining if the candidate tools of the SPL could be built
with the documented elements.

In this point, it is worth mention that the meshing tool
domain model presented in this paper is not complete. It is

probable that the feature model, business goal and goals are
more complete than scenarios and actions. A full meshing
tool domain model that includes both characteristics of our
developed tools and characteristics of the tools developed
for others is beyond the scope of this paper. However, this
model can be extended following the process presented in
the previous section.

3.1. Lexicon

First of all, it is important to identify the terms that are
essential to the domain because they allow the stakeholders
to understand the basic concepts and use a common lan-
guage while building and/or using a product.

In this section we describe a part of the vocabulary used
in the meshing tool domain. It is not exhaustive, but it in-
tends to illustrate how the lexicon is defined. This knowl-
edge will be also useful for delimiting the scope of the SPL.

• Mesh: A mesh is a discretization of a domain geome-
try into simple cells. This discretization can be either
composed by a unique element type, such as triangles,
tetrahedra or hexahedra, or by a combination of differ-
ent element types.

• Meshing Tool: It is a piece of software for generating
and managing meshes.

• Refinement Criteria: These criteria control the number
of points and size of the mesh elements, e.g., Maxi-
mumEdgeLength (all the edges must have a length less
or equal than a threshold value) and MaximumArea
(all the elements must have an area less or equal that a
threshold value).

• Processes involved in mesh generation. The user of
meshing tools usually specifies a domain geometry,
some physical values associated to this geometry and
some quality criteria, and wants to get an appropriate
mesh in order to simulate some phenomena that occur
in this domain. In order to do this, almost any meshing
tool requires one or more of the following algorithms:

Generation of Initial Mesh: The meshing tool takes
as input a domain geometry and generates as out-
put a discretization that represents the geometry
as exact as possible. It may have the same num-
ber of final points as the input geometry or a dif-
ferent one.

Optimization: This is a process that does not insert
new points in the mesh in order to improve its
quality. The optimization algorithms are strate-
gies that move the current points in an adequate
way so that the quality of the elements is im-
proved according to some optimization criteria.



Derefinement: This process allows to generate a
coarser mesh in regions with too many points.
For example, if a MinimumEdgeLengh criterion
is specified, all edges whose length is less than
the MinimumEdgeLength value are eliminated.

3.2. Business Goal and Particular Goals

We have identified the business goal and the particular
goals for this domain.

Business goal

Developing new meshing tools for different applications
with minimum effort.

Goals

We have identified several particular goals in this domain.
Here we present nine representative ones.

G1: Generation of good quality meshes for diverse domain
geometries that fulfill certain given criteria in specific
regions of the domain depending on the particular ap-
plication requirements.

G2: Generation of meshes with the minimum amount of
points that fulfill the application requirements.

G3: Generation of meshes in a reasonable CPU time.

G4: Generation of meshes using an efficient memory man-
agement.

G5: Scalability in the number of required mesh points.

G6: Make easy the interchange of different implementa-
tions for components of the same type.

G7: Make easy to add a new kind of process to be applied
to the mesh.

G8: Generation of meshes that fulfill the requirements of
different numerical methods.

3.3. Features

Feature diagram

Figures 4 and 5 show part of our feature model. Accord-
ing to Figure 4, the features User Interface, 2D Gener-
ate Initial Mesh, 2D Input, 2D Output, 2D Visualize and
2D Mesh are common to any 2D meshing tool. 2D Algo-
rithm, 2D Criterion, 2D Region, 2D Evaluate, 2D Move
Boundary and 2D Postprocess are optionals, i.e., they can
be present or not in a particular 2D meshing tool. The above
is also applicable both for common and optional features
for 3D features. Moreover, the interaction styles for user

interfaces Command Language, Menu Selection, Direct
Manipulation and Form Fill In can be all or any subset in
a particular tool. Finally, a meshing tool must work with
meshes in two dimensions (2D Meshing Tool) or three di-
mension (3D Meshing Tool), but not with both.

User Interface 2D Meshing Tool

2.5D Meshing Tool

3D Meshing Tool

Meshing Tool

Manipulation
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Language Form Fill−in
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Menu Selection
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3D Input 3D Output
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3D Generate 3D Criterion3D Algorithm
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Inclusive−or features

Alternative features

Symbols

Figure 4. A feature model for meshing tool
domain

Feature constraints

Feature models some times need to contain additional con-
straints [8] or composition rules [15] that cannot be ex-
pressed as mandatory and optional feature characteristics,
or group characteristics as exclusive-or and inclusive-or
groups. Even though these constraints could be represented
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Figure 5. A feature model for meshing tool domain, continuation

in a graphic fashion, we prefer to organize them in a table
to enhance understandability of the feature model.

Table 1 shows some of the existent constraints for 2D.

Table 1. Constraints between features
Feature Constraint Feature
2D Algorithm REQUIRES 2D Mesh
2D Algorithm REQUIRES 2D Region
2D Generate Initial Mesh REQUIRES 2D Input
2D Lepp-Delaunay REQUIRES Triangle
2D EXCLUDES 3D
2D Lepp-bisection EXCLUDES Rectangle
2D Move Boundary EXCLUDES 2D Region
2D Postprocess EXCLUDES 2D Region
Quadtree EXCLUDES Triangle

3.4. Scenarios and actions

We here detail a list of use and development scenarios
for particular meshing tools as well as their corresponding
sequence of actions. Notice that some actions that take part

in different scenarios have the same identification because
they are identical.

Scenarios s0 to s8 are use scenarios, and s9 to s13 are
development scenarios. Even though this division is strict,
some stakeholders could work with use scenarios for under-
standing how to build a product of the SPL. The important
issue is to classify the scenarios in one of the two kinds.

Notice that each scenario could be applied both two and
three dimensions. For this reason, we built generic scenar-
ios and actions.

S0 : Generate Delaunay meshes for convex domains.
A1 : Apply an algorithm for reading the geometry in

the corresponding format.

A2 : Apply a Delaunay algorithm to generate the ini-
tial mesh.

A3 : Store the mesh in a specified output format.

A4 : Visualize the mesh.
S1 : Generate quality Delaunay meshes for PLC domains.



A1 : Apply an algorithm for reading the PLC geome-
try in the corresponding format.

A2 : Apply the Conforming Delaunay algorithm in
order to generate the initial mesh.

A5 : Select refinement and/or improvement criteria,
and regions where they will be applied.

A6 : Apply the Voronoi Point Insertion algorithm us-
ing the specified quality criteria and regions.

A7 : If desired, evaluate the quality of the mesh ele-
ments.

A3 : Store the mesh in a specified output format.

A4 : Visualize the mesh.
S2 : Generate quality meshes with a minimal number of

final mesh points.
A1 : Apply an algorithm for reading the geometry in

the corresponding format.

A2 : Apply an algorithm to generate the initial mesh.

A5 : Select refinement, improvement and/or opti-
mization criteria, and regions where they will be
applied.

A8 : Apply the refinement, improvement and/or opti-
mization algorithm that minimizes the number of
inserted points using the specified quality criteria
and regions.

A9 : If necessary, apply a derefinement algorithm us-
ing the specified derefinement criterion and re-
gion.

A3 : Store the mesh in a specified output format.

A4 : Visualize the mesh.
S3 : Generate meshes with approximated quality as fast as

possible.
A1 : Apply an algorithm for reading the geometry in

the corresponding format.

A2 : Apply an algorithm to generate the initial mesh.

A5 : Select improvement and/or optimization criteria,
and regions where they will be applied.

A10 : Apply the fastest improvement and/or optimiza-
tion approximated algorithm using the specified
quality criteria and regions.

A3 : Store the mesh in a specified output format.

A4 : Visualize the mesh.
S4 : Generate meshes with minimal quality that optimizes

the memory used.
A1 : Apply an algorithm for reading the geometry in

the corresponding format.

A2 : Apply an algorithm to generate the initial mesh.

A5 : Select refinement and/or improvement criteria
and regions where they will be applied.

A11 : Apply a memory efficient refinement and/or im-
provement algorithm using the specified quality
criteria and regions.

A3 : Store the mesh in a specified output format.

A4 : Visualize the mesh.
S5 : Generate large meshes in a reasonable cpu time.

A1 : Apply an algorithm for reading the geometry in
the corresponding format.

A2 : Apply an algorithm to generate the initial mesh.

A5 : Select refinement criteria and a regions where
they will be applied.

A12 : Apply the fastest refinement algorithm using
the specified criteria and regions.

A3 : Store the mesh in a specified output format.

A4 : Visualize the mesh.
S6 : Generate meshes for numerical method that require

specific information (postprocess).
A14 : Read an already generated mesh.

A15 : Store the mesh in its internal representation.

A16 : Apply post-process to the mesh.

A3 : Store the mesh in a specified output format.

A4 : Visualize the mesh.
S7 : Evaluate meshes.

A14 : Read an already generated mesh.

A15 : Store the mesh in its internal representation.

A17 : Evaluate the quality of the mesh.

A4 : Visualize the mesh.
S8 : Adapt and improve the quality mesh of an already

generated mesh.
A14 : Read an already generated mesh.

A15 : Store the mesh in its internal representation.

A5 : Select a quality criterion and a region where they
will be applied.

A6 : Apply an improvement and/or optimization al-
gorithm using the specified quality criterion and
region.

A7 : If desired, evaluate the quality of the mesh ele-
ments.

A3 : Store the mesh in a specified output format.

A4 : Visualize the mesh.
S9 : Incorporate a new visualizer.

A18 : Choose a new visualizer.



A19 : Implement the common interface in order to
integrate the new visualizer into the tool.

S10 : Incorporate a new algorithm to the existing ones.
A20 : Identify and implement the component that rep-

resents the algorithm we want to add.

A21 : Implement the common interface in order to
integrate the new algorithm into the tool.

S11 : Incorporate a new kind of mesh processing.
A22 : Identify and implement the component that rep-

resents the process we want to add.

A23 : Implement the common interface in order to
integrate the new process into the tool.

S12 : Incorporate a new criterion for refine, improve, opti-
mize and/or derefine algorithms.
A24 : Define the criterion we want to add.

A25 : Implement the common interface for this crite-
rion.

S13 : Incorporate a new approach to generate an initial
mesh.
A26 : Design a new algorithm to generate an initial

mesh.

A27 : Implement the common interface for any initial
mesh algorithm.

3.5. Consistency

Table 2 establishes the relationship between goals and
scenarios (By-Scenario, relationship [a] in the Domain-
Model schema). We can see that all goals are achieved
by at least one scenario, and that all scenarios achieve at
least one goal, fulfilling condition [k]in ConsistentDomain-
Model. Table 3 (relationship [i]) establishes that all actions
are fulfilled by at least one feature, fulfilling conditions [n]
and [o] in ConsistentDomainModel. By construction, the
set of actions is the union of all actions required for ful-
filling the specified scenarios. Table 4 (By-Feature, rela-
tionship [b]) shows that every feature in the first level of
the feature model is required for fulfilling at least one sce-
nario. According to invariant [j] of the schema Consistent-
DomainModel we must assure that every feature in feature
model will be present and described in the lexicon. This is
achieved by simple inspection of the feature model and lex-
icon. Following a similar procedure, all other conditions in
the ConsistentDomainModel schema can also be proved.

Due to the symmetry shown in the feature model by 2D
Meshing Tool and 3D Meshing Tool features and because
each action is related to the feature in 2D and 3D at the same
time, we built Table 3 without putting the prefix 2D or 3D
to each feature. The same occurs in Table 4 for Features and
Scenarios.

Table 2. Relationships between Goals and
Scenarios

Goals Scenario
G1, G2, G3, G4, G8 S0

G1, G8 S1
G2, G3, G4, G5, G8 S2

G1, G3, G8 S3
G1, G4 S4

G1, G3, G5, G8 S5
G1, G3, G8 S6
G1, G2, G8 S7

G1, G8 S8
G6 S9

G3, G4, G5, G6 S10
G3, G4, G5, G7 S11

G6 S12
G6 S13

Table 3. Relationship between Actions and
Features

Action Features
A1 Input
A2 Generate initial mesh, Mesh
A3 Output, Mesh
A4 Visualize, Mesh
A5 Region, Criterion
A6 Algorithm, Criterion, Region, Mesh
A7 Evaluate, Mesh
A8 Algorithm, Criterion, Region, Mesh
A9 Algorithm, Criterion, Region, Mesh
A10 Algorithm, Criterion, Region, Mesh
A11 Algorithm, Criterion, Region, Mesh
A12 Algorithm, Criterion, Region, Mesh
A14 Input
A15 Mesh
A16 Postprocess, Mesh
A17 Evaluate, Mesh
A18 Visualize
A19 Visualize, Output, Mesh
A20 Algorithm
A21 Algorithm, Criterion, Region, Mesh
A22 Algorithm
A23 Algorithm, Criterion, Region, Mesh
A24 Algorithm, Criterion, Mesh
A25 Algorithm, Criterion, Mesh
A26 Input, Generate initial mesh, Mesh
A27 Input, Generate initial mesh, Mesh

Table 4. Relationship between Features and
Scenarios

Feature Scenarios
Generate initial mesh S0, S1, S2, S3, S4, S5, S13

Algorithm S1, S2, S3, S4, S5, S8, S10, S11, S12
Input S0, S1, S2, S3, S4, S5, S6, S7, S8, S13

Output S0, S1, S2, S3, S4, S5, S6, S8, S9
Criterion S1, S2, S3, S4, S5, S8, S10, S11, S12
Region S1, S2, S3, S4, S5, S8, S10, S11

Evaluate S1, S7, S8
Visualize S0, S1, S2, S3, S4, S5, S6, S7, S8, S9

Postprocess S6
Mesh S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,

S11, S12, S13

It is necessary for a detailed consistency to advance in
developing scenarios and actions that include features of



deeper levels of detail. Moreover, we need to complete Ta-
bles 3 and 4 because features of the first level as 2D Move
Boundary, 3D Move Boundary and User Interface are
not included.

3.6. Completeness

As we have mentioned, completeness is necessary to
check against the needs of the stakeholders. In that sense,
the domain experts are called to verify this condition, re-
viewing the different artifacts of the domain model.

Other possibility is to check against existing meshing
tools. That is beyond the scope of this paper.

4. Related Work

We here discuss different techniques proposed for do-
main analysis (DA) in general. We work with domain anal-
ysis because domain modeling is part of it, and therefore
domain model is a output of the domain analysis. For de-
tails about other domain analysis methods, Succi et al. [33]
provide a survey.

Domain analysis is the process of identifying, collect-
ing, organizing, and representing the relevant information
in a domain, based upon the study of existing systems and
their development histories, knowledge captured from do-
main experts, underlying theory, and emerging technology
within a domain [27]. Although it is a general purpose pro-
cess, it has been identified as one of the most appropri-
ate forms of requirements engineering in the context of a
SPL [8].

Coplien et al.[6] propose SCV (Scope, Commonalities
and Variabilities), a method for conceptually addressing do-
main analysis within SPL. There are some notations and
techniques proposed for realizing SCV such as FAST [35],
FORM [16] and PuLSE [4]. These methods are useful for
any application domain and they generally cover the whole
domain engineering stage. All these methods propose well
defined processes for building the domain model. Our ap-
proach goes a step further by formalizing the domain model
definition and thus we are also able to precisely define iter-
ation/termination conditions for our proposed process. Fur-
thermore, we do not need to tailor the approach, because it
is specific for the meshing tool domain.

Smith and Chen [29] have applied SCV to the mesh-
ing tool domain using FAST. Even though their approach
is systematic, they do not take full advantage of the mesh-
ing tool domain characteristics because they apply a general
DA method for scientific computing software [28, 31]. For
example, we have noticed that the binding time for variabil-
ities in meshing tools is fixed: which features are included
is always decided at product design time, and which partic-
ular implementation is chosen for each included feature is

decided at compilation time. In this way, our documenta-
tion is more compact and the process is simpler because a
default binding time is used. This default binding time al-
lows us to make decisions at a higher level of abstraction,
and thus yielding simpler tools that would probably have a
better performance.

Kim et al. [17] propose a DA method based on goals
and scenarios. It involves four information levels: busi-
ness, service, interaction and internal, each of them refining
the previous one. This method is appropriate for charac-
terizing a domain where the expert has little experience on
software engineering. Meshing tool developers are usually
knowledgeable in software engineering, so we were able to
simplify the domain model. Our model includes the busi-
ness goal for the SPL and a single level where the complete
model is defined. Also Park et al. [24] propose to use fea-
tures, scenarios and goals for capturing the characteristics
of the domain, as we do. However, since their approach
is general for any domain, they use a method that involves
three successive specification levels. We found that for our
specific meshing tool domain, a model with two levels is
enough. Both the method of Kim et al. [17] and Park et
al. [24] have no termination condition. This is necessary
because both have four and three abstraction levels of re-
quirements respectively and the stakeholders need to know
when the domain model is correct and finished.

Niemelä and Immonen [21] introduce QRF (Quality Re-
quirements of a software Family) method, which explicitly
focuses on how quality requirements have to be defined,
represented and transformed to architectural models. This
method is appropriated structured and each step is clearly
defined. Even though we think this method could be used
for defining the meshing tool domain model, it needs tailor-
ing because it was probed in a particular domain, different
from meshing tool domain. Moreover, it requires the exis-
tence of already developed products (in our case this condi-
tion is optional). Finally, it is not clear the gap between the
problem space and the solution space, and it could represent
a risk for no experimented stakeholders. This characteristic
could be because the focus of the method is in transforma-
tion of the requirements to architectures.

Douta et al. [9] present a new and interesting approach
to commonality and variability analysis called CompAS,
for the specific domain of computer assisted orthopaedic
surgery. This approach cenerstre its efforts in the analy-
sis of the evolution of the domain to effectively determine
which features should be included as common or variable.
The method bases its source of information for building
the domain model in the publicly available literature (e.g.
books, articles and standards) to overcome the lack of sys-
tems documentation in that domain. CompAS only suggest
to the domain analyst to regularly consult domain expert
for a correct, consistent and complete functional decompo-



sition. This method is domain-specific as ours, and also
stakeholders play a relevant and clearly defined role.

Smith and Chen [30] researched meshing tool require-
ments with a SPL perspective, but no procedure is provided
for using the products of this method for actually building
meshing tools. Also Bastarrica et al. [2] propose a prod-
uct line architecture for the meshing tool domain, and they
show how tools could be built [1] using it, but they do not
focus on a systematic DA method.

5. Conclusions

We presented a domain modeling process specially
suited for the meshing tool domain, showing how its charac-
teristics could be specified using a model based on features,
scenarios, goals and lexicon. We propose a rigorous process
with activities, roles and clear termination conditions. It is
also customized avoiding activities that general processes
include but are not relevant here, such as determining the
binding time of the identified variabilities.

Deciding when requirements are complete is generally a
difficult issue. The termination conditions provided in our
process give a systematic means for verifying if the ele-
ments included in the domain model allow us to build all
the products within the SPL scope.

The Domain Model presented is the basis for building
a Meshing Tool SPL. In that sense and considering this
model, we have implemented a set of software components
that implement the functionality identified by the features.
We have also designed a candidate PLA based on the speci-
fied goals and scenarios. Currently we are in the process of
building a framework that automates the product engineer-
ing making use of all reusable assets.
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