
Exploiting a Goal-Decomposition Technique to Prioritize Non-functional
Requirements

M. Daneva1, M. Kassab2, M. L. Ponisio3, R. J. Wieringa4, O. Ormandjieva5
1,2,3,4{m.daneva, m.kassab, m.l.ponisio, r.j.wieringa}@utwente.nl

5ormandj@cse.concordia.ca

Abstract

Business stakeholders need to have clear and

realistic goals if they want to meet commitments in
application development. As a consequence, at early
stages they prioritize requirements. However,
requirements do change. The effect of change forces
the stakeholders to balance alternatives and re-
prioritize requirements accordingly. In this paper we
discuss the problem of priorities to non-functional
requirements subjected to change. We, then, propose
an approach to help smooth the impact of such
changes. Our approach favors the translation of non-
operational specifications into operational definitions
that can be evaluated once the system is developed. It
uses the goal-question-metric method as the major
support to decompose non-operational specifications
into operational ones. We claim that the effort invested
in operationalizing NFRs helps dealing with changing
requirements during system development. Based on
this transformation and in our experience, we provide
guidelines to prioritize volatile non-functional
requirements.

1. Introduction

Over the past ten years, the requirements
engineering (RE) community has increasingly
expanded its adoption and adaptation of goal-oriented
approaches to both functional and non-functional
requirements (NFRs). Assessing project stakeholders’
goals early in the software life cycle was recognized as
the major step towards achieving a project scope
definition with clearly understood and well-
communicated project goals [1,2]. Such an assessment
relies on the availability of knowledge on the user-
defined requirements and their effort estimates,
priorities, as well as their risk. This knowledge enables
analysts, managers, and software engineers to identify
the most significant requirements from the list of initial
defined requirements in the project. For instance, a

requirement deemed critical, taking much
implementation effort, and posing high risk, may be a
good candidate for immediate resourcing.

During RE, software projects essentially share the
following context factors:

• Varying requirements’ importance: by
definition, all requirements are required (i.e.
mandatory). However, at certain point of time
for some stakeholders, requirements are not all
equal in terms of value to them. Project
stakeholders are unlikely to agree on which the
most important requirements are.

• Limited resources: budget and schedule
constraints make it rarely possible to implement
all requirements in a given increment.

• Incompatible requirements: some requirements
types may be incompatible (e.g. security vs.
performance, multi-access vs. security) in the
sense that increasing the compliance with one
requirement makes it more difficult to achieve
the other requirement.

• Subjective prioritization: most prioritization
approaches are subjective and influenced by
project politics. They also ignore the rationale
behind stakeholders’ setting their priorities.

• Volatility: requirements that are likely to
change (for both anticipated and unanticipated
reasons) always result in concomitant changes
in the project schedule and budget.

These context factors make the objective
prioritization of requirements with various degrees of
volatility a critically important part of the RE process
in any project. Coupled with these factors is the need
to consider NFRs as an integral part of software
modeling and development. If the NFR in a project are
stated in non-operational specifications, then the effect
of change is done, by and large, on an ad-hoc basis,
which results in undesired effects such as
underestimation of the change impact, and the project
team unknowingly striving towards an obsolete goal.

The aim of this research effort is to introduce steps
towards operationalization and prioritization of NFRs.
We explore the use of goal-oriented solutions to help
prevent loosing the links between NFRs and
operational parts of the system, especially as priorities
change. In the rest of this paper, we first summarize
related work in Section 2. In Section 3, we describe
our approach. We discuss NFRs priority concerns from
a goal-oriented standpoint, present the softgoal and
hardgoal modeling approach we adopted, and assess
how it fits within the prioritizing process. Section 4
discusses the case of volatile NFRs, which are NFRs
whose effects on the remaining NFRs in a project is
unknown. We also discuss open issues, provide some
guidelines for practitioners to confront the issues, and
evaluate our early findings. Finally, Section 5
summarizes our early results.

2. Related work

 The NFR literature suggests a few process-oriented
approaches to NFRs [1,2,3,4]. What unites all these
authors is the use of techniques to reason about design
decisions on the inclusion or exclusion of requirements
that will impact the software architecture. Among
these literature sources, the NFR framework [4] has
been the first to propose the concepts of softgoal and
softgoal-satisficing to represent NFRs in the RE
context and reason about them. A softgoal is a goal
which has no clear-cut definition or criteria to
determine whether or not it is satisfied. Goal-
satisficing, then, means that the solution used to
achieve the goal, is expected to satisfy it within
acceptable limits. For example, we never can say that a
system is 100% maintainable against future possible
changes, but we can build-in enough good
maintenance practices to it so that it is considered
easy-to-maintain. The NFR framework starts with an
initial set of high-level NFRs as NFR softgoals. The
NFR softgoals are refined into more specific ones
iteratively while establishing interdependencies. These
include relationships among softgoals, and
relationships between softgoals and interdependencies.
Along with these, priorities are identified,
operationalizations are considered, tradeoffs are made
and design rational is provided. The operation of the
framework can be visualized in terms of the
incremental and interactive construction, elaboration,
analysis and revision of a softgoal interdependency
graph (SIG).

For design architects to be able to focus their effort
on the most important NFRs, priorities must be
identified. The NFR framework suggests that
architects: (i) identify those softgoals that are vital to

the system’s success as critical; and (ii) identify
softgoals that deal with a significant portion of the
organization’s workload as dominant. In the
framework, priority softgoals are identified by an
exclamation point (!).

Missing from this approach, however, is (i) the
impact that the stakeholders can have on the
requirements elicitation process and (ii) the objective
reasoning in the decision making process to select
from different candidate operationalizations to satisfice
NFRs.

Since the publication of the NFR framework, the
goal-oriented RE community made, though, a number
of attempts to get architecture design goals from
requirements to evaluate design alternatives. A few i*-
based approaches [5,6] have shown promising in
specific project contexts.

Other related work includes the following: in [7]
Cysreiros and Leite researched the process to elicit
NFRs, analyzed their interdependencies, and traced
them to functional conceptual models. They brought
extensions of UML conceptual models (namely, Class,
Sequence, and Collaboration diagrams) which include
a way to express NFRs. The key claim these authors
made was that augmenting conceptual models with
representations of NFRs can improve the quality of the
resulting conceptual models themselves. In [8]
Robinson et al put in perspective the metrics-based
Root Requirements Analysis technique to confront the
requirements interaction problem, which is how to
discover, track and resolve conflicting interactions
among NFRs. Related work on NFRs prioritization
includes [9,11,12,13,14,15]. These sources indicate
that if the priority is to measure how much a NFR
matter to a stakeholder, then that priority is linked to
the value creation, NFR satisfaction (in CBAM) and
realization of win conditions (in WinWin),
contribution to quality attributes, compliance to legal
regulations and contract with customers, support of
business values, strategic benefits, probability of the
product´s success in its target market. Priority may also
reflect business criticality, importance to the customers
or users, urgency, importance for the product
architecture, or fit to release theme [13,14,15].

While these approaches enable – in a variety of
ways, designers to consistently stay in tune with
stakeholders, they do not provide answers to questions
like how the NFRs are mapped to operationalized
elements in the solution space, when to decompose
NFR to functional, when not to do it, or how to deal
with volatile NFRs. In our solution approach, we
suggest a first step towards briging this gap.

3. The solution approach
Our approach rests on five types of sources: (i) the

World-Requirements-Goals-Specification-Architecture
(WRGSA) reference model [16] that helped us
maintain the big picture of how the real-world, NFRs,
goals, specifications, and architecture fit together, (ii)
the goal-oriented NFR framework [4] which helps us
decompose softgoal NFRs into finer operationalizable
definitions, (iii) the goal-question-metrics
methodology [17] which is the key support to compare
possible operationalizations for a specific NFR, (iv)
functional size measurement methods [18] which let us
quantify these operationalizations, and (v) our own
experience in NFRs prioritization.

The solution approach is presented in Figure 1. It
shows how the NFR framework and the GQM
approach are used in synergy to support the
transformation of environment’s requirements into
goals, system specifications and architecture design
options. We deploy a hardgoal extension of the NFR
framework to eliciting, document, and analyzing
NFRs. We, then, propose the GQM approach as the
key support vehicle to find the most meaningful
operationalizations suited for a given software
development process. The next subsections describe in
more detail how our approach is thought to add value
in the context of these three RE activities.

Figure 1. The solution approach.

3.1. Stepwise prioritization of NFR and NFR-
volatility

To arrive at a complete and consistent definition of
the NFRs, RE teams typically go through iterative

NFRs prioritization. It has been the authors’
experience that the first step towards initial
prioritization is to ask stakeholders, while still eliciting
requirements, to group those NFRs they think are
critical and thus are likely to proceed with their
implementation first. It is very important to notice that
this initial prioritization is done without any influence
from the developers involved in the downstream
project activities. When requirements negotiation
meetings happen, we observe that a second step
towards prioritizing NFRs is executed. This is when
stakeholders acknowledge the presence of conflicting
requirements during software execution and when
developers’ input may be sought after to provide early
insights into how conflicting NFRs may impact the
downstream project activities. To support this step, we
propose to link pairs of requirements with the right
sign that indicates their positive, negative or neutral
interaction. In what follows, we use the symbols “+”,
“-” and “” to represent positive, negative, and neutral
interaction during software execution, respectively.
Our proposal rests on the observation that during
software execution, when the executable version of the
software is running, hardly any NFRs manifest in
isolation. Typically, the provision of one NFR may
affect the level of provision of another. We refer to this
mutual dependency as non-orthogonality. Given this
assumption, we propose a function M to map each pair
of the identified NFRs to the values “+”, “-” or “”. The
lack of knowledge on the interaction between a pair of
requirements NFRi, NFRj is indicated with “?”:

M (NFRi, NFRj) ∈{“+”, “-“, “”,”?”}
We defined the following rules for assigning these
values to the pairs of NFRs:

1. The value “-” is assigned to a pair of NFRs
originating from the set of NFRs that contribute
negatively at the same functionality. This means that
one NFR in the pair has a negative (damage) effect on
the other at the same functionality. The assignment is
based on the experts’ judgment of the developers. This
is a case of a conflict between NFRs.

2. The value “+” is assigned to a pair of NFRs
originating from the set of NFRs that contribute
positively if they meet at the same functionality. This
means that one NFR in the pair has a positive
(constructive) effect on the other. The assignment is
based on the experts’ judgment of the developers.

3. The value “” is assigned to a pair of NFRs among
the ones in the set of NFRs that do not interact. This
assignment is based on the experts’ judgment of the
developers.

4. The value “?” is assigned to a pair of NFRs when
the type of their influence is unknown. This in general

makes the NFRs volatile as variations in their
influences to other NFRs are expected and would lead
to instability of the solution and possibly undesirable
impact on other elements.

As a common approach, conflicts among NFRs
(those NFRs interacting between each other with “-“
during the execution) can be resolved by attributing
weights to the interacting NFRs at each user-
recognizable piece of functionality. The values are
given according to the importance each NFR has from
the viewpoint of the stakeholders on a particular
functionality. For example, security could be of higher
importance than availability at functionality “x” and of
less importance at functionality “y”. A scale can be
built to map the numerical value of weight to the
importance. For example,
• Very important takes values in the interval

]0,8..1,0]
• Important takes values in the interval]0,5..0,8]
• Average takes values in the interval]0,3 .. 0,5]
• Not so important takes values in the interval

]0,1..0,3]
• Do not care takes values in the interval [0.. 0,1]

These values of very important, important, not so
important, and do not care, do help stakeholders in
attributing priorities to conflicting NFRs. Then, the
conflict mentioned above should not be too difficult to
resolve, as the weights express priorities.

On other hand, we observe that the approach of
attributing a weight of significance to NFRs in order to
identify dominance is not always applicable. In
complex systems, such as concurrent systems, two or
more NFRs may affect the same functionality with
changing priorities with respect to the execution of the
behavior of some component (e.g. method body), so
assigning a hard-coded prioritization will not follow
the correct semantics. For example, we may have a
case with synchronization “sync” and scheduling
“sched” whereby <sync, sched> method body<sched,
sync> [6]. If authentication is introduced in the system,
then priorities also change: <authentication, sync,
sched>method-body<sched, sync, authentication>. In
addition, this approach of conflict resolution requires a
major involvement of stakeholders. This makes it
costly and dependent on stakeholder’s availability.
Moreover, in contrast to developers, business
stakeholders are not interested in such system concerns
and they may not have the necessary expertise to feel
comfortable to get involved in these matters. They
would merely want their requirements implemented.

For the purpose of this research, we keep our focus
on identifying the NFRs of predicted variation or
“volatility” in the conflict resolution process. Dealing

with the volatile NFRs would require a deeper
understanding of their impact on other NFR, which is
further explored by applying the GQM goal-
decomposition technique as described in section 3.3.

3.2. NFR Framework: softgoals vs. hardgoals

In this section we focus on how we extended the
modeling notation of the NFR framework so that we
explicitly include hardgoal NFRs. This was done to
confront the general tendency to treat NFRs as
softgoals, which is known to add ambiguity to the
requirements specifications [7,27,28]. For example, the
response time in a user interface is typically soft,
whereas response time requirements in real-time
systems can be hard. In such a case, our extension to
the taxonomy of the NFR framework would alleviate
this problem; it would allow architects to identify those
NFRs that need to be stated in a clear-cut manner. For
example, a performance requirement maybe specified
as “The system shall respond within 3 seconds”. This
NFR describes an objective criterion for testing the
quality of the service to be delivered. Hence, as a third
step towards prioritizing NFRs, we propose an
extension of the NFR framework and its softgoal
notation by using the two elements shown in Figure 2.

Figure 2: Elements added for the extended NFR
framework.

To illustrate this extension, suppose the
stakeholders state their interest in a good system
performance in a more restricted way: “Transfer online
client investment orders for account manager’s
approval with good performance and the response
time should be within 3 seconds.” This statement is a
hardgoal NFR concerned with the quality constraints
of the system under development, and, as such, it
needs to be absolutely satisfied rather than satisficed.
Stakeholders may also ask for an architecture
constraint to be imposed on the system, either as an
independent requirement or as an operationalization
for a stated goal; e.g. “Database indexing should be
applied on the columns used most”.

The graph in Figure 3 shows a performance
softgoal with the new condition on response time and
the imposed architecture constraint. The main use of
hardgoals is to cope with prioritization and resource
limitation. Suppose design architects are given a large

NFR Hardgoal

Operationalizing NFR Hardgoal

number of goals. An important question is, then, if
they should put equal amount of effort into meeting
each of them. The intuitive answer to this question is
that architects most likely should not, especially if they
only have a limited amount of time available. Instead,
they would want to prioritize the goals and spend more
time on goals of high priority.

Figure 3: Employing the hardgoal concept in the NFR

framework.

Our approach acknowledges this situation and
postulates that NFR hardgoals are of higher priority
than NFR softgoals. We take this standpoint mainly
because hardgoals are to be satisfied rather than
satisficed. In other words, goals to be satisfied are
more important than goals to be satisficed. The failure
in satisfying the stated conditions breaks the hard goal.

3.3. The Goal-Question-Metric approach to
operationalizing NFRs

For architects to be able to use hardgoals for NFR
prioritization purposes, they need a deeper
understanding of the context in which the system is to
function. We propose to use the GQM [17] approach
to (ii) achieve enough knowledge on NFRs modeled as
softgoals and, subsequently, (ii) state them in
operational hardgoal terms. If we can see GQM as a
problem-solving process where the goals are
decomposed into quantifiable indicators of NFRs, then
we should be able - in the context of requirements, to
decompose non-operational NFRs into operational
ones through questions while focusing on project-
specific goals. Furthermore, the GQM technique would
also help eliciting volatile NFRs, which might
otherwise become a source of uncertainly and risk in
the development process. In our approach, the NFR
framework is used to identify the most likely value
(“+”, “-“or “”) of interaction of a given volatile NFR
with the NFRs already incorporated in the solution. At

this level, we can apply some reasoning in order to
assign the most likely value to a volatile NFR which
would optimize the conflict resolution for all NFRs.
The GQM is further applied to elicit the volatile NFR
until enough knowledge on it is gained and its
contributions to the NFR framework are identified. We
also have to provide a clearly defined substitution
property which has to be fulfilled when the nature of
the volatile NFR is better explored and this NFR is
operationalized, for instance:

• if a volatile NFR has been assigned “+” in its
relation with NFRi, then the GQM outcome
has to be a contribution “+”;

• if a volatile NFR has been assigned “-“ in its
relation with NFRi, then the GQM outcome
has to be a contribution “-“;

• if a volatile NFR has been assigned ““ in its
relation with NFRi, then the GQM outcome
has to be a contribution “ “.

4. Discussion

Although the definition of our approach is at its
early stage and, therefore, does not pretend to be
complete, we analyzed - in terms of open issues, each
of the three steps towards a better NFRs prioritization
process. For each issue, we put together a list of
existing solution elements that are worth considering
when further elaborating of our approach. We ended
up with a set of early guidelines for software staff to
use to smooth the impact of the issues.

We also did an early evaluation in an attempt to
better understand certain aspects of our approach. The
next subsections focus on our open issues, our initial
set of guidelines, and our evaluation.

4.1. Issues

Our analysis yielded three open issues that require
special attention and further research efforts:

1. When to decompose NFR to FR? The literature
on software measurements [19,21] suggests NFR be
first decomposed to FR. Then a functional size
measurement method (like classic Function Point
Analysis [20] or COSMIC-FFP [18]) takes as its input
those FR that result from the NFR decomposition and,
then yields as output the contribution of the NFR to the
project size and, ultimately, to the effort estimated to
build the system. Functional size metrics practitioners
assume that it always makes sense to decompose all
NFRs to FRs. However, an alternative viewpoint in the
software metrics literature [20], assumes that in each
project there is always a portion of NFR which can not
be decomposed to FR when sizing. These specific
NFR are seen as criteria to make architecture design

ResponseTime[Account]{<= 3 seconds}

+ +

Space[Account]

UseIndexing UseUncompressed
Format

-

Performance [Account]

decisions. Therefore, instead of decomposing them to
FR, it makes sense to treat them as context factors
which are expected to introduce uncertainty to the
estimation process [20]. To the best of our knowledge,
neither the RE community not the software
measurement community has come with a list of
criteria about when decomposition of NFRs to FRs is a
good thing to do and when it is not.

2. How to deal with those NFR which can be
decomposed into FRs up to a certain level? Certainly,
the majority of the NFRs in a project should and can
be decomposed to FR, but the level to which this is
possible may vary [22].

3. How to deal with NFRs which should/could not
be decomposed to FRs? Recent experiences in
functional size measurement [20] suggest NFRs that
are not decomposable be seen as architecture design
choices. As such, they have their influence on an early
project cost estimate. However, very few guidelines
exist on how to account for this type of NFRs when
estimating project effort, so that the estimates are more
realistic.

Based on our own experience and the studied NFRs
literature sources [1,2,3,7,8,9,22,23], we suggest the
following guidelines as first steps to confront the three
issues identified:

• Develop consensus among stakeholders
regarding the priorities of NFR.

• Identify NFR that deal with significant
portions of the system under development

• Divide and conquer (each piece should have a
less NFR as possible).

• Identify stakeholders goals that are most
important to the success of the system and the
NFRs vital to these goals.

• Apply GQM to NFRs identified as softgoals
or volatile.

• Postpone details concerning technology as
much as possible.

• Document those hardgoals which are
architecture design options.

4.2. Early evaluation

The preliminary research we carried out brought us
to two early findings. First, in classic GQM, it is not
easy to determine goals [17]. When GQM is used as
complementing the NFR framework, this is not
difficult, because we explicitly formulate the NFRs as
hardgoal or softgoal statements. In addition, such goal
statements can be relatively easily derived from the
original stakeholders’ requirements stated in natural
language. Our experiences seem similar to experiences
by other authors [17,24].

Second, linking the NFR framework with GQM
allows the metrics in GQM to serve as measurable and
changeable variables for NFR operationalization. This
is an essential prerequisite for understanding and –
eventually, gaining control over volatile requirements.

Third, we consider the guidelines we formulated as
solutions to the uncovered issues as preliminary. This
list of guidelines is only the beginning of an ongoing
effort to develop better prioritization process for
volatile NFR. Although the guidelines are not
validated in case study settings, they sound intuitive
and worth further investigation. Currently, we are
planning a case-study-driven research effort in
companies’ sites, as part of a research project [26] that
aims at improving the linkages between RE and
architecture design.

Fourth, we started assessing the question if our
approach is capable of dealing with any type of NFR.
Clearly, because we favor the use of hardgoals, we can
expect that our approach will be more effective when
prioritizing those NFRs which effectively demand
actions to be performed by the system, and therefore
affects the architecture design choices. For example, a
NFR as maintainability is not easily operationalized as
part of RE, but rather will be traced back to what
architecture options were chosen. Our solution can
document NFRs like maintainability, but because these
NFRs are not operationalizable, they are not dealt with
in our prioritization approach. In contrast to this, NFRs
such as availability, safety, performance, accuracy,
frequently demand the design to be carefully analyzed
and evaluated in order to satisfice these NFRs [7]. So,
we think, that it is more likely that these NFRs will be
the ones which our solution approach will fit the most.

5. Conclusions

Getting the right software project scope in a volatile
environment is one of the earliest project activities, and
the one that has the greatest potential to cause serious
problems if it is done wrongly. In this paper, we
proposed solutions to improving some aspects of the
NFRs prioritization process. Our solution uses an
extension of the NFR framework and its integration
with the GQM approach to operationalizing NFRs. We
also identified open issues related to the goal
decomposition of NFRs. These set up research
directions for our future research efforts, namely (i)
extending the COSMIC FFP method to include NFRs,
(ii) integrating refined hardgoal concepts into the
original NFR framework, and (iii) exploring solutions
for resolving NFRs conflicts by relating them to
architecture design alternatives that have attendant
risks, uncertainties, and budget implications.

6. Acknowledgement

This research has been supported by the
Netherlands Organization for Scientific Research
(NWO), under the Quality-Driven Requirements
Engineering and Architectural Design (QuadREAD)
project, and by Centre for Telematics and Information
Technology, the Netherlands, under the COSMOS
project.

8. References
1. Boehm B., H. Hoh, “Identifying Quality-Requirement

Conflicts IEEE Software pp. 25-36, Mar. 1996
2. Robertson, S., J. Robertson, Mastering the Requirements

Process, Addison-Wesley, 1999.
3. T.G. Kirner and A.M. Davis, “Nonfunctional

Requirements of Real-Time Systems,” Advances in
Computers, vol. 42, pp. 1-38, 1996.

4. Chung, L., B. A. Nixon, E. Yu, and J. Mylopoulos,
Nonfunctional Requirements in Software Engineering,
Kluwer Academic Publishing, 2000.

5. Yu, Y. J.C. Sampaio do Prado Leite, and J. Mylopoulos,
From Goals to Aspects: Discovering aspects from
Requirements Goal Models, IEEE Joint Int. Conf. on
Requirements Engineering, pp.33–42, 2004.

6. Hui, B., S. Liaskos, and J. Mylopoulos, Requirements
Analysis for Customizable Software: A Goals-skills-
preferences Framework, Requirements Engineering
Conference, pp.117–126, Sept. 2003.

7. Cysneiros, L.M., J.C.S. do Prado Leite, Non-functional
Requirements: from Elicitation to Conceptual Models,
IEEE Trans. On Soft Eng, 30(5), May, 2004, p.328-350.

8. Robinson, W., S. Pawlowski, and V. Volkov,
Requirements Interaction Management, ACM Comput.
Surv., 35 (2), pp.132–190, 2003.

9. Ryan A., An Approach to Quantitative Non-Functional
Requirements in Software Development, Proc. the 34th
Annual Government Electronics and Information
Association Conference, 2000.

10. Kazman, R., In H.P., Chen H.-M., From Requirements
Negotiation to Software Architecture Decisions,
Information and Software Technology 47 (2005), pp.
511-520.

11. Kazman, R., Asundi, J., Klein, M.: Quantifying the Cost
and Benefits of Architectural Decisions. In: Proc. Int.
Conf. Software Eng. (2001) 297-306

12. Azar, J., R. K. Smith, D. Cordes, Value Oriented
Prioritization, IEEE Software, Jan, 2006.

13. Lehtola, L., M. Kauppinen, S. Kujala, Requirements
Prioritization Challenges in Practice. Proc. of 5th Int´l
Conf. On Product Focused Software Process
Improvement (PROFES), Kansai Science City, Japan,
April 2004, pp.497-508.

14. Berander, P., A. Andrews, Requirements Prioritization,
in: A. Aurum, C. Wohlin (Eds.): Engineering and
Managing Software Requirements, Springer, Berlin,
Heidelberg, 2005, pp. 69-94.

15. Davis A., The Art of Requirements Triage. IEEE
Computer, 36 (3), March, 2003, pp 42 – 49.

16. Yamamoto, S., H. Kaiya, K. Cox, S. Bleistein, Goal
Oriented Requirements Engineering: Trends and Issues,
IEICE Trans on Inf. & Syst, E89(11), Nov 2006, pp.
2701-2711.

17. Basili V., G. Caldiera, and H. D. Rombach. "Goal
Question Metric Paradigm,". In: Encyclopedia of
Software Engineering, ed. J. J. Marciniak. New York:
John Wiley & Sons, 1994.pp. 528-532.

18. Abran, A., Desharnais, J.-M., Oligny, S., St-Pierre, D.
and Symons, C., COSMIC FFP – Measurement Manual
(COSMIC implementation guide to ISO/IEC
19761:2003), École de technologie supérieure –
Université du Québec, Montréal, Canada, 2003, URL:
http://www.gelog.etsmtl.ca/cosmic-ffp/manual.jsp

19. Fenton N.E, S. L. Pfleeger, Software Metrics: A
Rigorous and Practical Approach, PWS Publishing, 2nd
edition, revised printing, 1998.

20. Pfleeger, S. L., F. Wu, R. Lewis, Software Cost
Estimation and Sizing Methods,: Issues and Guidelines,
RAND Corporation, 2005.

21. FISMA, Experience Situation Analysis, Finnish Software
Metrics Association, 2001, http://www.fisma.fi/wp-
content/uploads/2006/09/fisma_situation_analysis_metho
d_nd21.pdf

22. Mylopoulos, J., Goal-oriented Requirements
Engineering, Keynote at the 14th IEEE International
Conference on Requirements Engineering, IEEE
Computer Society Press, 2006.

23. Lamsweerde, A., R. Darimont, and P. Massonet, "Goal
Directed Elaboration of Requirements for a Meeting
Scheduler: Problems and Lessons Learnt. Proc. 2nd IEEE
Int. Symp. on Requirements Eng. pp. 194-203.

24. Mylopoulos, J., Chung, L., Nixon, B., Representing and
Using Nonfunctional Requirements: A process Oriented
Approach. IEEE Trans. S.E. 18, 6(1992) 483-497.

25. Haruhiko Kaiya H., Osada A., Kaijiri K., Identifying
Stakeholders and Their Preferences about NFR by
Comparing Use Case Diagrams of Several Existing
Systems, Prod. Of the International Conference on
Requirements Engineering, 2004 (RE04), pp.112-121.

26. http://quadread.ewi.utwente.nl/
27. Rosa, N. S., Cunha, P. R. F., Justo, G. R. R.: Process

NFL: A language for Describing Non-Functional
Properties. Proc. 35th HICSS, IEEE Press (2002)

28. Kavakli E., Loucopoulos P., Goal Driven Requirements
Engineering: Evaluation of Current Methods, Proc. of
EMMSAD’03, LNCS, Springer.

