

Verifying the Construction of a Software Model from a Requirements Model

Nelly Condori-Fernández, Oscar Pastor

Department of Information Systems and Computation,
Valencia University of Technology,

Camino de Vera s/n, 46020, Valencia-Spain
{nelly,opastor}@dsic.upv.es

Abstract

A software model is the outcome of abstracting a set
of relevant elements that contribute to the functional
size according to measurement model.

The purpose of this paper is to verify the
construction of the software model when applying the
RmFFP measurement procedure with computer science
students. The RmFFP procedure was designed
according to the COSMIC-FFP standard method for
estimating the functional size of object-oriented systems
from requirements specifications obtained in the
context of the OO-Method approach.

1. Introduction

Currently, various studies on software development
conclude that the most critical tasks arise during the
specification and analysis of requirements.
Consequently, errors occurring in the initial phase of
the production process can have a considerable impact
on the reliability of estimation models whose key
parameter is software size. Software size can be derived
by means of the quantification of functional user
requirements [1]. There are several Functional Size
Measurement (FSM) methods that have used as a
starting-point the Function Point Analysis (FPA)
method [2], such as MARK II FPA [3] NESMA FPA
 [4] and COSMIC-FFP [5].

However, these measurement methods are complex
and not easy to use due to the over-generalised nature
of their measurement manuals. For this reason there is
currently increasing interest in designing measurement
procedures.

A measurement procedure is defined as a set of
operations, specifically described, used in the
performance of particular measurements in accordance
with a given method [6].

RmFFP is a FSM procedure designed on the basis of
the COSMIC-FFP standard method, which has received
ISO/IEC 19761 approval [5].

This FSM procedure was defined to estimate the
functional size of the applications generated with OO-
Method from a requirements specification [7]. To do
this, a set of mapping rules has been defined to
facilitate the construction of the software model [8].
This software model is the abstraction of the relevant
primitives of the requirements model that contribute to

the functional size according to the COSMIC-FFP
metamodel.

The purpose of this paper is to verify whether the
construction of the software model is reliable. This
verification is carried out by means of the application of
RmFFP in a “Rent a Car” case study by various
computer science students.

The paper is structured as follows: Section 2
discusses related work. Section 3 describes the steps set
of the RmFFP process. Section 4 presents an analysis of
the reliability of the data movement identification.
Finally, conclusions are presented and future work is
considered.

2. Related work

In the literature we can identify basically two
generations of FSM methods.

The first generation methods consider only the end
user viewpoint when carrying out a specific
measurement. A disadvantage of this is that it does not
always cover all the system’s functionality. These
standard methods are IFPUG-FPA [9] MARK II FPA
 [3] and NESMA FPA [4].

The second generation is represented by one
measurement method, COSMIC-FFP [5], which was
designed for various software domains such as
information systems and real-time systems. This
method extended the concept of user and made a
distinction between the end user viewpoint and the
development viewpoint.
One disadvantage of these FSM methods is their
generic character that makes applying them in
particular contexts difficult. For this reason different
FSM procedures have been designed to be applied in
specific measurements according to a given method.

Table 1 shows the different second generation
proposals that have been found in the literature, which
establish a mapping between the primitives of the
various software artefacts and the relevant concepts of
the COSMIC-FFP metamodel.

As shown in Table 1, the proposals of Bevo et al
 [10], Jenner [11], and Habela [12] consider different
UML diagrams for the construction of the software
model. They do not consider a development method,
which is a disadvantage for the construction of the
diagrams. Another disadvantage of the proposals of
Bevo et al and Jenner is the lack of clarity when

identifying certain basic components that contribute to
functional size.

The proposals of Poels [13], Diab et al [14] and
Nagano et al [15] consider software artefacts produced
in the analysis phase of their respective methods

(MERODE, RRRT, Shalaer-Mellor) in order to
construct the software model. Diab and Nagano
instantiate the COSMIC-FFP meta-model for real-time
systems.

Table 1. COSMIC-FFP measurement procedures

Proposals Context Software artefacts Phase of life
cycle

Bévo et al. UML Use case diagram and classes
diagram

Requirements and
Analysis

Jenner UML Sequences diagram and use
case diagram Requirements

Poels MERODE Business model and services
model Analysis

Diab et al. RRRT States-chart diagram Analysis

Azzouz and
Abran RUP

Use case diagram, sequence
diagram, and class diagram.

Requirements,
Analysis and
Design

Habela et al. UML Use case model Design

Nagano et al. Shlaer- Mellor
Class diagrams, state-chart
diagram and collaboration
diagrams

Analysis

Condori et al. OO-Method
Requirements model: sequence
diagrams and use case
diagrams.

Requirements

Azzouz and Abran [16] consider three size units
that correspond to development phases. They use
different diagrams for the construction of the software
model, considering the design phase to be a better
phase in which to estimate functional size, allowing a
closer aproximation to real size.

Finally, our proposal, RmFFP [8], uses different
diagrams of the OO-Method Requirements Model in
order to estimate functional size from early stage of
the life cycle. Nevertheless, the difficulty encountered
in the proposals of Bevo, Jenner and Azzouz in
clearly identifying certain significant concepts of
COSMIC-FFP is resolved in our proposal by means of
the stereotypes incorporated in the messages of the
sequence diagrams. In addition we also control the
duplicity problems which were identified in some
primitives of the requirements model [17].

In the next section, we introduce the application of
RmFFP by means of a steps set proposed by Jacquet
and Abran [18].

3. Application of the RmFFP procedure

Jacquet and Abran define a measurement process
model [18], which includes measurement method
design, its application, analysis of the results obtained
and its utilization in estimation models (See Figure 1).

 In the first step, a measurement method is
designed, the concept to be measured is defined and
the rules to measure it are conceived. In the second
step, the measurement method is applied to measure
the size of software applications. In the third step, the
results provided by the measurement method are

presented and verified (i.e. the results can be
compared to other well-known results in order to try
to evaluate their correctness). Finally, the results are
used in different types of models (e.g., productivity-
analysis models, effort-estimation models, budgeting
models).

Figure 1. Measurement Process Model [18]

Therefore, ensuring high quality measurement
results relies not only on design quality but also the
quality of application. The application of an FSM
procedure is an intellectual process that consists of
abstracting the relevant primitives of the abstract
artefact to be measured according to the measurement
model, and quantifying the elements abstracted in
order to obtain the functional size.

According to Jacquet and Abran, three steps are
required in order to apply a measurement procedure:
software documentation gathering, construction of the
software model, and the application of numerical
assignment rules.

Figure 2 shows these steps adapted in order to
apply the RmFFP procedure in the OO-Method
context [19].

Design of
Measurement

method

Application of the
measurement
method rules

Analysis of
measurement

result
Exploitation of

the measurement
result

Figure 2. Application of the RmFFP procedure

3.1. Gathering of the software documentation

From the perspective of the functional size
measurement methods, the aspect of most interest is
functionality, which means ‘what the software should
do’. This functionality may be documented by
software artefacts produced prior to implementation;
or it may be that this documentation is not available.
If the latter is the case, functional requirements can be
derived from artefacts installed on the computer
system even after they have been implemented (See
Figure 3).

Requirements
definition
artefacts

 Data analysis/
modelling
artefacts

Artefacts from functional
decomposition of

requirements

Functional requirements in the software artefacts to be measured

Physical
programs

Software operations
manual and procedures

Physical data
storage artefacts

Pre-implementation

Post-implementation

Figure 3. Functional User Requirements Model [21]

RmFFP uses the system functionality specified in a

semi-formal way using the OO-Method Requirements
Model. As shown in Figure 4, the Requirements
Engineering phase culminates with the obtaining of
the sequence diagrams. This diagram model is the
principal artefact on which the measurement will be

carried out. For this reason specification quality will
affect the quality of results of the measurement.

OO-Method assures the traceability and
consistency of the functional specification by means
of the semiautomatic generation of the sequence
diagrams model from the use case model [20].
- Traceability: it is possible to accurately determine

the impact caused in the sequence diagrams model
when changes are carried out in the use case
model and vice versa. Thanks to this traceability it
is possible to estimate the functional size with
greater accuracy at an earlier phase. There will be
a greater degree of proximity between the size
obtained from the requirements specification and
the size of the final application.

- Consistency: the deduction of each sequence
diagram from the use case model is always carried
out using the same criteria. As these criteria are
inherent to the development method and are
independent of subjective reasoning, the
functional size obtained will not be affected by the
different levels of detail that may be specified.
This consistency will also contribute to the
accuracy and reliability of the functional size.

Mission statement

F1 F2 F3

F4 F5

FRT

Sequence Diagrams Model

Use Case Model

manual

manual

Semi-automatic

Figure 4. Requirements engineering phase

Figure 4 shows the OO-Method Requirements
Engineering phase, which starts with the definition of
the Mission Statement that describes the purpose of
the system and its main functionalities. The Functions
Refinement Tree (FRT) is then obtained by means of
a hierarchical decomposition of the business functions
of the system.

The leaves of this tree represent the entry point for
building the Use Case Model, which models the
system’s functional requirements from the user’s
perspective. The leaf nodes of the FRT are considered
to be primary use cases. It is also possible to have
secondary use cases, which are important for
organizing and managing complexity through

OO-METHOD
REQUIREMENTS MODEL

Software Documentation Gathering

Construction of the Software Model

Application of the Numerical Assignment Rules

Aggregation functions

Functional user requirements
Specification

 Mapping Rules

COSMIC-FFP METAMODEL
Software Model

Measurement function
Functional size

Cfsu

F3

F5 FRT

MODEL USE CASE
MISSION STATEMENT

F1 F2
F4

SEQUENCE DIAGRAM

 Measurement Rules

relationships among use cases that are stereotyped as
EXTEND and INCLUDE. The construction of the use
case model is carried out manually.

Finally, the sequence diagrams are built semi-
automatically from each use case. The notation of
these sequence diagrams is provided for UML with
some stereotypes incorporated to classify the different
types of interaction, such as: signal, service, query and
connect [7] (see Figure 5).

System :Class 1 :Class 2

Message 1

Message 2

INCLUDE SD

Actor

[cond]Message 3

 Boundary Class Entity Classes

Message condition

Life Time

<Condition or iteration expression>

Figure 5. Structure and notation of sequence diagram

3.2. Construction of the software model

The software model is built once the
documentation of the system has been gathered. This

model describes how the software to be measured is
represented according to the measurement method.

With RmFFP, as shown in Figure 2, the
construction of the software model includes the
instantiation of the COSMIC-FFP metamodel in a
particular context, such as OO-Method.

This metamodel has been elaborated in order to
clearly represent the diverse generic concepts of
COSMIC-FFP presented in the measurement manual
 [21], and also to identify the relationships existing
between these concepts.

Figure 6 shows the COSMIC-FFP metamodel,
which has been represented by means of the UML
class diagram, chosen because of its simplicity,
expressiveness and popularity.

As can be observed in the metamodel, the object of
interest to be measured can be identified from many
measurement viewpoints. The viewpoint determines
the level of detail that can be seen in an object of
interest (e.g. the measurement viewpoint of the
developer). This viewpoint is also determined by the
purposes of the functional size measurement. The
measurement purpose defines why the measurement is
being undertaken and what the result will be used for.
The purpose helps the measurer to determine the
scope to be measured; hence, measurement scope is
the functionality to be included in a particular
functional size measurement.

LayerFunctional Process
1..n 1

+belongs to

1..n 1

User Triggering event

1..n

1..n

1..n

+Initiates 1..n

1..1 1..n
+produces

Measurement
View Point

Data attributes

1..n

+Belong to+Has

1

Data Movement

2..n

1

2..n +Occurs in

1 +Composed of

11..n
+Implied by

1..n

+Moves

1..n
+Identified from

1
+Focus

1

1..n

+includes

+related to

Boundary

Software operating
environment1..n 11..n

+Is partitioned in
1

+Has1

1

Object of interest
Measurement

Purpose

Measurement
scope

+Determined by

+Determined by
1

1

1

1

+triggered by

Data Group

Piece of software

1

+within 1..n

+comprised of

Type: String

Type=‘E’

Entry Read Write Exit

Type=‘R’ Type=‘W’ Type=‘X’

(Type= E and Type = X) or
(Type= E and Type = W)

Figure 6. Cosmic-FFP metamodel

The object of interest may be any physical thing or

any conceptual object described by a set of attributes
that belong to a data group. Each data group must be
directly related to a single object of interest.

For this reason, an aggregation relationship has
been used between the concepts of data group and
data attribute. In addition, the minimum cardinality is
one because an object of interest cannot be empty. A
data attribute is the smallest piece of information that

belongs to an identified data group. A data movement
occurs in a functional process and moves a data
group. As shown in Figure 6, the data movements can
be of four types: entry, read, write, and exit. For
instance, an entry moves a data group from a user
across the boundary into the functional process where
it is required. Each functional process is composed of
a minimum of two data movements: one Entry, and
one Exit or one Write. This is represented by means of
the minimum cardinality of two in the “Occurs_in”
role between the Functional Process and Data
Movement classes.

The set of functional processes performed at the
same level of abstraction constitutes the concept of
layer. A layer is the result of the functional
partitioning of the software operating environment
and can be divided into one or more pieces of
software. The software operating environment is the
set of software that is operating concurrently on a
specified computer system. In a multi-layer software
environment, each layer is a user of another layer
because a layer uses the functional services provided
by other subordinate layers. A user is any person or
thing that communicates or interacts with the software
at any time. Finally a triggering event is an event that
initiates one or more functional processes; these
events are triggered directly or indirectly by any user.

To facilitate the instantiation of this metamodel, a
set of mapping rules were defined [8]. The application
of these rules allows us to obtain the software model
to be measured. Nevertheless, some questions arise,
such as: what concept of the metamodel should be

first instantiated, and what concepts could be
instantiated in a parallel way. To respond to these
questions, an activities diagram has been constructed
in order to represent the operations sequence of the
RmFFP procedure.

The RmFFP process starts with the definition of
the measurement context, which includes three
activities: the identification of purpose, viewpoint and
scope of the measurement. The mapping phase is then
carried out in order to construct the respective
software model, which is guided by means of a set of
activities specified in Figure 7. Each activity of this
phase is realized by a set of mapping rules. This phase
culminates with the identification of data movement
types, which are constituted as the basic components
of COSMIC-FFP.

Taking into account the COSMIC-FFP metamodel
(Figure 6) and the activities diagram (Figure 7), we
verify that the concepts of layer and triggering event
were not instantiated explicitly in some primitive of
the Software Requirements Model. The identification
of a triggering event is not an indispensable activity,
since this activity contributes to the identification of
the functional processes, which are already clearly
identified by the Users (Rule 1) and the boundary
(Rule 2). The identification of layers is also not
necessary given that the functional requirements have
the same abstraction level; thus there is no functional
division of the operating environment of the software.
In addition, the identification of data attributes is
carried out only if a measurement sub-unit is required.

Need sub-unit of
m easure

Are all
functional
processes

m easured?

[YES]

[NO]

Identify software boundary

Identify functional process

Identify data groups

Identify data attr ibutes

[NO]

Identify Entry data movem ent type
Apply m easurem ent function

Apply aggregation functions

[YES]

Identify m easurement viewpoint

Identify users

Identify measurem ent purpose

Identify m easurem ent boundary

Measurement Context Mapping Phase Measurem ent Phase

Elim inate duplicated data
movem ents

Identify Exit data movem ent type

Identify Read data m ovement type

Identify W rite data movement type

Figure 7. Activity diagram of RmFFP

R1

R2

R3, R4

R5, R6

R8

R7

R21…R24

R17…R20
R9…R13

R16

R14, R15

3.3. Application of the rules of numerical
assignment

As shown in Figure 7, duplicated data movements
are eliminated before the application of the
measurement function. In order to carry out this
elimination activity a set of rules were defined to
avoid pseudo data movements.

The purpose of the measurement phase is to
quantify the software model built in the mapping
phase. To do this, we apply the measurement function
and the measurement rules that were defined for the
respective aggregation functions. Finally, the
functional size is obtained in Cfsu (Cosmic functional
size unit) units.

As shown in Figure 2, the software model is
constituted as a by-pass for the quantification of this
model (step 3), which was built from documented
software (step 1). The quality of the construction of
the software model is therefore important in the
obtaining of reliable results. To ensure the quality of
the software model, we have to ensure the correct
application of the respective rules defined in the
carrying out of each activity of this phase. As shown
in Figure 7, the data movements identified are
constituted as entries for the next phase. For this
reason, we analyze the reliability of the identification
of data movements, for which we carried out an initial
empirical study which is described in the next section.

4. Analyzing reliability in the
identification of data movements

In order to analyze reliability in the identification
of data movements, the RmFFP procedure was used
by twenty-three computer science students at the
Valencia University of Technology who had similar
backgrounds in the use of the OO-Method
Requirements Model. These students were selected by
convenience, i.e., they were students enrolled in the
“Software Development Environments” course.

To carry out this descriptive analysis, it was first
necessary to plan a training session in order to
develop skills in measurement using RmFFP with the
22 students. Having a sufficient level of knowledge of
the OO-Method Requirements Model was a
prerequisite for using RmFFP. This training session
fitted well into the scope of the “Software
Development Environments” course.

Reliability was verified in terms of reproducibility,
which is defined as the proximity between the results
of measurements of the same measurand carried out
by different subjects [22].

To quantify reproducibility, firstly we collected
data obtained by each student for the requirements
specification of the “Rent a car” case study. The
measurement of this case study was carried out at the
data movement type level.

Secondly, to analyze the degree of variability in
the measurements, we apply the equation proposed by
Kemerer [23]:

∑

∑

≠=

≠=

−

−
−

= n

ikk

k

i

n

ikk

k

i

n
Size

Size
n
Size

REP

,1

,1

1

1

This equation was calculated by taking the
difference in absolute value between the size value
produced by a subject i and the average value
produced by the other n- 1 subjects in the sample,
divided by this average value. The scores (REPi)
closest to zero indicate the least variability in the
measurement, and thus the greatest reproducibility.

Table 2 shows the variability obtained in each data
movement type.

Table 2. Variability of data movement type
Variability Entry Read Write Exit
Minimum 0.018 0.008 0.004 0.000

Maximum 0.410 0.149 0.081 0.000

Standard dev. 0.095 0.048 0.020 0.000

Mean 0.117 0.046 0.020 0.000

As shown in Table 2, the average variability

obtained for the ENTRY data movement type is
slightly higher when compared to the variability of
other data movement types. To investigate this minor
difference, we checked the application of Rule 8 to
identify possible causes of this variability. We found
that some students had difficulty in identifying the
data groups involved in an Entry data movement type.
In relation to this problem, we identified two
guidelines to assist in the identification of entry data
movements in the messages with the stereotype
<<signal>>:

- All messages have, at least, n parameters (p1,

p2,..pn). The parameters involved in messages that
have the entity class type as receiver class, are
attributes of this receiver class. However, the
parameters involved in the messages with a
receiver class of boundary type (System) can be
attributes of various classes of entity type.
Therefore, the data movement identification in this
message type is not so evident. According to the
COSMIC-FFP manual [19], a data movement
moves one or more data attributes that belong to a
single data group. We identified two interaction
fragment types that illustrate the data group
involved in the signal messages.
o The reception of the message <<signal>>

induces the system class to send “n messages”
to “n lines of life” with at least one parameter
pj (See Figure 8). Therefore the number of data
groups involved in the message signal is
determined by the number of messages
induced by the class system.

Figure 8. Type 1 interaction fragment

o The occurrence of connect messages in a

scenario is conditional on the prior occurrence
of the service message. The connect message is
activated when the service message needs to
establish or to eliminate links among the class
objects (See Figure 9). Therefore, the number
of data groups involved in the signal message
is determined by the receiver class of the
service message plus the receiver class of the
connect message.

Figure 9. Type 2 interaction fragment

- Scenario start messages will not be considered as

the entry data movement type. This is an exception
to Rule 8, because this rule permits acceptance of
every message labelled with the stereotype signal
and input value as an entry data movement type.

Figure 10. Registering Breakdowns

As shown in Figure 10, the scenario begins when the
user starts the registry of a breakdown that occurred in
the hospital, which is not considered as a data
movement. Then, the user introduces the breakdown
description, which is identified as an Entry data
movement type (Rule 8). After data introduction, the
system creates a new object of the Breakdown class,
which is identified as a Write data movement type
(Rule 14). As a result, the system shows the registered
data, which is identified as an Exit data movement
type (Rule 16).

We assigned one numeric value of 1 Cfsu to each data
movement identified. Finally, by applying Rule 21,
we obtained 3 Cfsu as the functional size of this
scenario.

5. Conclusions and Future Work

The construction of the software model is an
essential requisite for the obtaining of functional size.
The quality of this model will depend on various
factors, such as the quality of the functional
specification and the completeness and reliability of
the mapping rules.

The elaboration of the COSMIC-FFP metamodel
and the elaboration of the activities diagram allowed
verification of the completeness of the mapping rules,
which were defined in [5]. The trigger event and layer
were the only concepts that could not be represented
explicitly by any rule.

An analysis on reliability in the identification of
data movements was carried out. The results show
that the entry data movement type is less reproducible
that other data movement types. The ambiguity in the
identification of data groups involved in the signal
messages could be a possible cause of this variability.
To reduce this ambiguity, we identified specific
guidelines for the identification of the entry data
movement type.

In terms of future work, we plan to carry out an
experimental study on the reproducibility of RmFFP
taking into account these guidelines.

Acknowledgements

This research is part of the DESTINO project (ref.

TIN2004-03534) supported by the Ministry of
Science and Technology of Spain.

References

[1] ISO/IEC 14143-1- Information Technology - Software
Measurement-Functional Size Measurement. Part 1:
Definition of Concepts, 1998.
[2] Albrecht A. J., Measuring application development
productivity. In IBM Application Development Symposium,
1979, pp. 83-92.

[3] UKSMA, MKII Function Point Analysis Counting
Practices Manual. Version 1.3.1, United Kingdom Software
Metrics Association 1998.
[4] NESMA, 1997. Definitions and Counting Guidelines
for the Application of Function Point Analysis.
[5] ISO, ISO/IEC 19762 Software Engineering, COSMIC-
FFP, TO functional size measurement method, International
Standards Organization, 2002.
[6] ISO, 1993. International Vocabulary of Basic and
General Terms in Metrology, International Organization for
Standardization, Switzerland.
[7] E. Insfrán, O. Pastor and R. Wieringa, Requirements
Conceptual Engineering-Based Modelling. Journal
Requirements Engineering, Springer-Verlag, 2002, 7(2): 61-
72.
[8] N. Condori-Fernández, S. Abrahão, O. Pastor, Towards
to Functional Size Measure for Object-Oriented Systems
from Requirements Specifications. IEEE Quality Software
International Conference 2004, Braunschweig, Germany.
[9] IFPUG, Function Point Counting Practices Manual,
Release 4.1, International Function Point Users Group,
Westerville, Ohio, USES 1999.
[10] Bévo V., Lévesque G., and Open A. UML Notation for
Functional Size Measurement Method. In Proc. 9th
International Workshop on Software Measurement,Canada,
September 8-10, 1999, Pp. 230-242.
[11] Jenner M.S. COSMIC-FFP and UML: Estimation of
the Size of to System Specified in UML-Problems of
Granularity. In Proc. Fourth European Conf. Soft.
Measurement and ICTWith-trol, Germany,May 2001, pp.
173-184.
[12] Habela P., Glowacki E., Serafinski T., Adapting Use
Marry Model for COSMIC-FFP based Measurement, in the
15th International Workshop on Software
Measurement,Montreal, Canada,Shaker-Verlag, 2005.
[13] Poels G. Functional Size Measurement of Multi-Layer
Conceptual Object-Oriented Models. In Proc. 9th
International Object-Oriented Information Systems
Conference,Geneva, Switzerland, September 2-5, 2003, Pp.
334-345.

[14] Diab H., Koukane F., Frappier M., St-Denis
R.µCROSE: Automated Measurement of COS-MIC-FFP for
Rational Rose Real Time. Information and Software
Technology, 2005, 47(3) : 151-166.
[15] Nagano S., Ajisaka T., Functional metrics using
COSMIC-FFP for object-oriented real-time systems. In
Proc. 13th International Workshop on Software
Measurement, Montreal, Canada, September 23-25, 2003.
[16] Azzouz S., they Open A. To Proposed Measurement
Mention in the Rational Unified Process and its
Implementation with ISO 19761: COSMIC-FFP. In
Software Measurement European Forum,Rome, Italy,2004.
[17] N. Condori-Fernández, S. Abrahão, O. Pastor. The
Problem of the data movement duplicity in a functional
measurement procedure. Workshop Latin American of
Engineering of Requirements and Environments Software,
Buenos Aires, Argentina, 2006.
[18] Jacquet J. P. and Abran A., 1997. From Software
Metrics to Software Measurement Methods: To Process
Model, 3rd Int. Standard Symposium and Forum on
Software Engineering Standards Walnut Creek.
[19] O. Pastor, J. Gomez, E. Insfran, and V. Pelechano: The
OO-Method approach for information systems modeling:
from conceptual object-oriented modeling to automated
programming. Information Systems 26 (2001) 507-534.
[20] I. Diaz, L. Dark, O. Pastor, A. Matteo. Interaction
Transformation Patterns Based on Semantic Roles,
International Conference on Applications of Natural
Language to Information Systems, Alicante-Spain, 2005.
[21] COSMIC-FFP Measurement Manual version 2.2,
Common Software Measurement International Consortium,
January 2003.
[22] ISO, "ISO/IEC 14143-3 - Information technology -
Software measurement -Functional size measurement-Part
3: Verification of functional size measurement methods",
2003.
[23] Kemerer C. F. Reliability of Function Points
Measurement: A Field Experiment. Communica-tions of the
ACM, February 1993, 36(2): 85-97.

