
Structural Testing with Use Cases

Adriana Carniello* 1, Mario Jino2, Marcos Lordello Chaim3
1National Institute for Space Research, Applied Computing Program,

CEP 12227-010, São José dos Campos - SP, Brazil
2University of Campinas, School of Electrical and Computer Engineering,

CEP 13083-970, Campinas - SP, Brazil
3Embrapa Informática Agropecuária, Barão Geraldo,

CEP 13083-886, Campinas - SP, Brazil
adcarnie@lac.inpe.br, jino@dca.fee.unicamp.br, chaim@cnptia.embrapa.br

Abstract. Understanding how a user interacts with a system is important if the
goal is to deliver a product that meets the user's needs. Use cases constitute a
primary source of requirements in a user-centered perspective and are often
utilized to derive acceptance tests. Given such a critical role in requirements
engineering, we introduce a novel set of testing criteria based on the use case
specification with a two-fold objective: to assess the quality of test cases
derived from use cases and to test the use case specification itself. Differently
from previous approaches, the novel set of testing criteria requires that
structural elements of the use cases be exercised at least once. To support the
application of the new set of testing criteria, a testing coverage tool, called UCT
- Use Case Tester, was developed. A case study using UCT shows that the new
testing criteria are able to evaluate the quality of a test data set as well as to
detect faults in use case specifications.

Keywords: structural testing, use case, software testing, UML

1. Introduction

The increasing need for reliable software products makes the software testing
activity pivotal to the software process. This activity consists of defining the relevant
aspects of the software, named test requirements, which should be checked by test
cases. Depending on the source of information used to obtain the test requirements,
the testing carried out is classified as based on specification (functional testing) or
based on code (structural testing) [1].

* Adriana Carniello was supported by PST Amazon Electronic Industry. Questions concerning this

paper should be directed to adcarnie@lac.inpe.br.

Regarding program testing, there is a growing body of evidence showing that
structural and functional testing and reading techniques are complementary since they
reveal distinct classes of defects [2]. On the other hand, the same situation is not
observed in the testing of pre-code representations; mainly because pre-code
representations are regarded as a source of functional test requirements, especially
acceptance tests. However, pre-code representations have a well-defined structure too,
and this structure may be used as a source for identifying test requirements.

One of the possible benefits of applying structural testing on pre-code
representations is to reveal defects that would not be detected if only functional tests
were applied. The hypothesis is that the behavior observed in program testing is
mimicked in pre-code testing. We explore this idea in testing use case specifications
[3].

Use cases are being widely used to determine the functional requirements of a
system. A use case may be defined as a sequence of actions a system executes to yield
an observable result of value to its actors [4]. In the Unified Modeling Language
(UML), the use cases are graphically represented in a diagram, which also shows the
relationships among them. These relationships determine the diagram structure.

Many test techniques utilize use cases as a source of information for deriving test
requirements [5, 6, 7, 8]. Nevertheless, these techniques utilize use cases to identify
functional test requirements and disregard the testing of structural aspects of this
specification. To fill in this gap, we propose testing criteria which aim at exercising
the internal structure (relationships) of the use case diagram.

The reason for applying the new set of criteria is to assure the testing of the
minimal but essential elements of this diagram. We hope by testing the structure of the
use cases to detect classes of defects distinct from the ones identified by the use case
functional testing. In doing so, we aim at accomplishing a two-fold objective: to assess
the quality of functional test cases derived from use cases; and to test the use case
specification itself.

To support the application of the use case structural testing criteria, a test coverage
tool called UCT – Use Case Tester was implemented. This tool determines the test
requirements according to the new structural criteria, emulates the use cases behavior
and analyzes the test coverage with respect to the criteria. A case study using the UCT
tool was conducted to check whether the use case structural testing can indeed detect
distinct classes of defects.

The remainder of this paper is organized as follows. In Section 2, the use case
structure is presented. Section 3 contains the definition of the proposed testing criteria.
The UCT test coverage tool is described in Section 4. Section 5 contains a case study
of the new criteria application; and Section 6, a discussion concerning the related
work. Finally, in Section 7, we draw our conclusions.

2. Use case diagram structure

In what follows we review the concepts that define the use case structure and
introduce other ones used to establish the proposed criteria.

Use case diagram elements

The use case diagram, in the UML context [9], is used to model the functional
aspects of a system. It consists of actors, use cases and relationships. Relationships
relate actors to actors, actors to use cases and use cases to use cases establishing the
use case diagram structure. These three elements are shown in Figure 1.

Figure 1. A use case diagram extracted from the UML Specification v1.5, pp.3-99 [4].

An actor, indicated in the diagram by a stick man, represents the role of a user or
an external system interacting with the system being modeled. Use cases, represented
by ellipses, define a sequence of actions a system executes to yield an observable
result of value to its actors [4].

Relationships between actors and use cases establish the participation of actors in
use cases. An actor may be related to another actor by a relationship of generalization.
Use cases can relate to other use cases through three types of relationships – include,
extend and generalization. A use case may be invoked by another use case as well as
by a message from an actor.

Use case relationships

For the description below, the basic use case in a relationship between two use
cases is the one which has its behavior augmented by the behavior of the other use
case.

Association relationship. Interaction represented by a solid line between an actor
and a use case. It indicates which actors communicate with each use case of the
diagram. For instance, in Figure 1 actor Salesperson has an association relationship
with use case Place Order.

Include relationship. Interaction represented by a dashed arrow labeled with the
keyword <<include>>. An include relationship from use case A to use case B

indicates that use case A contains the behavior specified in B. An include relationship
has in general a static connotation. The instance of an included use case will always be
performed unless the include relationship is located in an alternative flow of the basic
use case (an alternative flow deals with exceptions and strange cases [7]). The
behavior of the included use case is part of the behavior of the basic use case. For
instance, in Figure 1 use case Place Order includes the behavior of use cases Supply
Customer Data, Order Product and Arrange Payment.

Extend relationship. Interaction represented by a dashed arrow labeled with the
keyword <<extend>>. An extend relationship from use case C to use case D indicates
that use case D may be augmented (subject to specific conditions specified in the
extension) by some behavior specified in C. The basic use case D may also be
augmented by part of the behavior of C. Moreover, the basic use case should not
depend upon the addition of the extending use case C to carry out its behavior. This is
so as the extend relationship has a dynamic connotation; it will take place only if the
relationship condition is satisfied. For instance, in Figure 1 use case Request Catalog
may extend the behavior of use case Place Order if additional requests are wanted.

Generalization relationship. A generalization from an actor A to an actor B
indicates that actor A can communicate with the same kinds of use cases as actor B. A
generalization relationship from use case E, named child use case, to use case F,
named parent use case, indicates that E is a specialization of F. In both cases, this
relationship is represented by a generalization arrow; i.e., a solid line with a closed,
hollow arrow head pointing to the parent actor or use case [4].

Exercising Use Case Relationships

Our testing criteria require that use case relationships be exercised by test cases. In
what follows, we define precisely what is meant by exercising use case relationships.

Exercising an association relationship. An association relationship between an
actor and a use case is exercised by a test case that makes the actor to require the
behavior of the use case.

Exercising an include/extend relationship. An include/extend relationship between
use cases A and B is exercised by a test case that makes use case A to include/extend
the behavior of use case B.

Exercising a generalization relationship. This relationship is exercised by
exercising the relationships associated to the specializations.

3. Use case structural testing criteria

We have defined a family of testing criteria which aims at exercising particular
elements of the use case diagram [10]. The elements considered in the criteria are:
association, include and extend relationships. We say a test set satisfies a criterion
when all of its test requirements are exercised by the elements of the test set.

The criteria are defined according to which relationships should be exercised and
in the way they are exercised. We define two classes of criteria, namely, based on

relationships and based on the combination of the extend relationships. Due to space
restrictions, we present one criterion of each class.

Figure 2 contains a use case diagram used to illustrate the test requirements
defined by these criteria. This diagram was obtained from the user's manual of a
prepaid mobile phone system [11]. It represents a system for monitoring and billing
cell phone calls (for simplicity, we refer to it as billing system).

Notify Low Credit (8)

Call Service *5005 (15)

Check
 Numbers (7)

Check Credit (6)
(warn low credit)

<<extend>>

<<include>>Save Received Call (3)

Client

Save Finished
 Call (9)

Recharge
Phone (4)

Operator

Call User's Service (5)

<<include>>

(service *5005)

<<extend>>

Update Credit (10)

<<include>>

<<include>>

Call Service *5000 (16)

<<include>>

Make Call (1)
<<include>>

<<include>>

<<include>>

Receive Call (2)

<<include>>

Check Period for
Making Call (13)

Check Period for
 Receiving Call (12)

Notify Period
Expiration (14)

Call Centre

Check Credit Period (11)

<<include>>

<<include>>

(admit to make call)
<<extend>>

(admit incoming call)
<<extend>>

(check period duration)
<<extend>>

Figure 2. Use case diagram of a system for monitoring and billing cell phone calls (billing
system). The number at the end of each use case's name is its identifier.

Testing criteria based on relationships

The criteria based on relationships require exercising the relationships in the use
case diagram. The criterion presented below requires exercising all the relationships in
the diagram and is defined as follows.

All-Associations-Inclusions-Extensions Criterion (c1). Given a test set T and a use
case diagram D, T must cause each association, include and extend relationship in D
to be exercised at least once.

One can observe that this criterion assures the full coverage of all types of
relationships considered during the test based on use cases.

The application of criterion c1 on the billing system requires exercising a set of
relationships. These relationships are represented below by pairs of identifiers. In the
association relationship, the first identifier refers to the actor. In the include and
extend relationships, the identifier that represents the basic use case in each
relationship is the first and the second one, respectively. The order of a pair of
identifiers obey the direction of the include or extend relationship arrow.

According to the criterion c1, the relationships that should be exercised on the
billing system are the following ones:

- Association: client-use case 1; client-use case 2; client-use case 4; client-use case
5; call centre-use case 1; call centre-use case 2; call centre-use case 11; call centre-use
case 10; call centre-use case 16; operator-use case 16

- Include: 1-6; 1-7; 1-9; 1-11; 2-3; 2-11; 4-10; 5-7; 5-16; 9-10; 15-6
- Extend: 8-6; 12-11; 13-11; 14-11; 15-5

Testing criteria based on the combination of the extend relationships

The extend relationship is related to a condition that must be satisfied if the
extension is to take place [4]. Based on the fact that the condition value decides
whether an extension will take place or not, we have proposed criteria that require not
only exercising extensions but also non-exercising them [10]. Consequently, these
criteria define test sets which exercise the combination of exercising and non-
exercising the extend relationships. We formally describe one of these criteria – the
all-extended-combinations criterion.

All-extended-combinations Criterion (c2). Given a test set T and a use case
diagram D, for each use case in D extended by at least two other use cases, T must
cause all the combinations of exercising and non-exercising the extend relationships to
be exercised at least once.

Extensions Test Requirement
12-11 13-11 14-11 exercised

r1 E E E X
r2 E E NE X
r3 E NE E �
r4 E NE NE �
r5 NE E E �
r6 NE E NE �
r7 NE NE E X
r8 NE NE NE X

Table 1. Criterion c2 test requirements.

Table 1 shows the test requirements of criterion c2 for the billing system use case

diagram, which presents the use case 11 being extended by three other use cases,
namely use cases 12, 13 and 14. In the first row of Table 1, the test requirement r1
means that the extend relationships 12-11, 13-11 and 14-11 should be exercised. The

test requirements from r2 to r8 represent the other combinations of exercising and
non-exercising of the same extend relationships, totalizing eight (23) combinations. In
each test requirement, an abbreviation E indicates that the extend relationship should
be exercised and NE indicates it should not.

4. UCT Testing Tool

A testing coverage tool called UCT – Use Case Tester – was developed to support
the application of the new testing criteria. This tool has three main functionalities:
determination of test requirements (according to selected criteria); simulation of test
case execution on descriptive specifications of use cases; and coverage analysis of
simulated test cases. These three functionalities are described below.

Determination of test requirements

In the UML the use cases are graphically represented in the use case diagram;
however, the use case diagram does not suffice to describe the use case behavior. As a
result, textual specifications have been utilized to complement the use case diagram
[12]. These specifications use informal textual notation which is adequate to describe
use cases but do not favor their automated analysis.

Thus there is a need for a formal notation to generate use case descriptions. We
have defined a notation that is utilized by UCT for use case description with this
purpose. This notation is based on Cockburn's framework [12] and is presented in
[10]. Figure 3 contains the description of use case Call User's Service using the UCT
notation. The notation reserved words are in bold.

Figure 3. Example of the UCT notation for use case description.

use_case_identifier(5);
use_case_name(Call User’s Service);
actors(start Client);
include_relationships(5-7, 5-16);
extend_relationships(15-5);
initial_states({valid number *5000, valid number *5005, invalid number});
actions_stream(
 inclusion(Check Numbers);
 if (valid number *5000)
 { inclusion(Call Service *5000);}
 extension_condition(service*5005): if(valid number *5005)
 { extension(service*5005);}
 if (invalid number)
 { action(System displays message: ‘invalid number’);}
)

From the static analysis of the files that describe the use cases of a system, UCT
maps each use case to an internal representation composed of two other lists: one that
contains the inclusions among the current use case and the other use cases and the
other that contains the extensions. These lists are traversed to determine the test
requirements of the criteria chosen by the tester.

Simulation of Test Case Execution

In addition to the lists of inclusions and extensions, the internal representation of a
use case contains a graph representing the use case stream of actions. This graph is
generated from the use case textual representation and is used to simulate its behavior.

The simulation of a use case behavior consists of, given a set of initial states (the
test case input data), walking through the use case graph of actions to determine which
inclusions and extensions are exercised. Thus it identifies the test requirements
exercised for a specific test set and allows checking the use case behavior by
analyzing the simulated sequence of actions.

During simulation, when a use case includes another one the UCT tool requests the
user to select a set of initial states related to the included use case. When a use case
being simulated encounters an extension point in its flow of actions, the extension will
occur or not occur according to the set of initial states selected for this use case
simulation. If the extension occurs, the UCT tool requests the user to select a set of
initial states related to the extending use case. Below we present the sumary of the
simulation of a test case execution regarding use case make call.

SIMULATION SUMMARY

---------- Use case 1 simulation ----------

Test data for use case 1: makeCall,
ordinaryNumber,validNumber,sufficientCredit,validCreditPeriod

Include relationship exercised: 1-7

Test data for use case 7: ordinaryNumber,realNumber,areaNumber

Include relationship exercised: 1-6

Test data for use case 6: creditAmount

Extend relationship exercised: 8-6

Test data for use case 8: -

Include relationship exercised: 1-11

Test data for use case 11: makeCall,equalSystemDate

Extend relationship exercised: 12-11

Test data for use case 12: -

Extend relationship exercised: 13-11

Test data for use case 13: firstPeriod,ordinaryNumber

Extend relationship exercised: 14-11

Test data for use case 14: expiringCurrentPeriod

Include relationship exercised: 1-9

Test data for use case 9: normalEndCall

Include relationship exercised: 9-10

Test data for use case 10: makeCall

Coverage Analysis

Once the sequence of inclusions and extensions exercised during the use case
simulation has been generated, this sequence is compared with the test requirements of
the applied criteria. The result is the coverage of the criteria with respect to the test
cases for which the execution was simulated. Note that the test requirements were
previously generated and were stored into internal structures of the tool. Below the
coverage analysis of the test case execution regarding use case make call is presented.

COVERAGE ANALYSIS OF CRITERION All-Extended-Combinations

----- Testing requirements exercised during simulation -----

Combinations of relationships

12-11 13-11 14-11

 E NE E

 E NE NE

 NE E E

 NE E NE

---- Testing requirements not exercised during simulation ----

Combinations of relationships

12-11 13-11 14-11

 E E E

 E E NE

 NE NE E

 NE NE NE

--

5. Case study

We utilized the family of use case structural criteria to evaluate a set of functional
tests developed from the use case specification of the billing system. This
specification comprises the use case diagram (Figure 1) and the textual description of
the use cases [10]. By measuring the coverage of the purely functional tests against the

structural criteria we intended to check whether relevant aspects to testing, established
by the new criteria, were uncovered.

Case study description

Heumann's approach was applied to derive the functional tests [7]. This approach
consists of identifying a set of scenarios for each use case and developing one or more
test cases for each scenario. The functional tests were simulated and evaluated using
UCT to assess their adequacy (coverage) with respect to the new criteria.

Results and Discussion

The functional tests satisfied all criteria based on relationships. Regarding the
criteria based on the combination of the extend relationships, all-extended-
combinations criterion (c2) was the only one not satisfied by the tests. Table 1
indicates the test requirements of criterion c2 not exercised (symbol X in the last
column) and exercised (symbol � in the last column) during the simulation.

Two non-exercised test requirements r1 and r2 are infeasible; i.e., there are no
input data that causes these test requirements to be exercised. For these requirements
the conditions of the extend relationships 12-11 and 13-11 are mutually exclusive (12-
11 – admit incoming call; 13-11 – admit to make call).

The other two non-exercised test requirements, r7 and r8, reveal the existence of
two scenarios not executed by the functional tests. The first scenario, represented by
the requirement r7, consists of exercising use cases 11 and 14 (use cases Check Credit
Period and Notify Period Expiration, respectively) without exercising use cases 12
and 13. This scenario is executed when the Call Centre, in every automatic change of
system data, asks for checking the validity of the client's credits in the context of
prepaid cell phones. The aim is to send a message warning the customer that her
credits are expiring within three days.

The second scenario, represented by the requirement r8, consists of exercising use
case 11 (use case Check Credit Period) without exercising use cases 12, 13 and 14
(use cases Check Period for Making Call, Check Period for Receiving Call and Notify
Period Expiration, respectively), which all extend use case 11. Indeed the entire
behavior of use case 11 was specified as a set of extensions, which contradicts the
UML definition for the extend relationship usage [4]. According to Booch et al. [9],
the extensions must be used to model exceptions – optional behaviors that represent
variations from the standard behavior of a use case. The extended use case must not
depend on these additional behaviors.

Therefore, the application of the structural criteria on the billing system use case
diagram was able to identify: (1) a scenario not executed by the functional tests; and
(2) a semantic inconsistency in the specification of one use case.

6. Related Work

Use cases as a source of information for testing is not indeed a novelty. Other
authors have also employed them with similar purposes [5, 6, 7, 8]. Nevertheless, they
use use cases to identify scenarios to be exercised by test cases.

On the other hand, the new set of test criteria identify structural elements of the use
cases to be exercised by test cases, not the set of scenarios they represent. Thus, the
originality resides in defining test requirements by analyzing the use case structure.
Our case study indicates that the structural testing of use cases complements the
functional tests by highlighting new aspects to be tested.

Another contribution is the simulation of test case execution implemented in UCT.
To our knowledge, UCT is the first tool to provide such functionality. It allows the
execution of tests before having a running prototype and the checking of the use case
behavior by analyzing the simulated sequence of actions. In this sense, it makes
possible to validate the requirements and to increase client's trust since the very
beginning of the project.

7. Conclusion

We have introduced a novel set of testing criteria based on the structure of use
case diagrams. The structure of the use case diagram is defined by the relationships it
contains, namely, association, include and extend relationships. The new criteria
establish testing requirements which impose the selection of test cases that exercise
these relationships.

The rationale to select test cases exercising the structure of use cases is to reveal
defects that would go undetected if only functional aspects were tested. We have
conducted a case study to analyze the claim contained in this rationale. For this
preliminary study, the functional tests did not exercise a scenario and did not detect an
inconsistency in the use case diagram. Thus the rationale's claim was valid.

The case study was conducted using Use Case Tester (UCT) – a tool which
supports the application of the new criteria. For a given use case diagram, UCT
determines the new criteria test requirements, emulates the use cases behavior and
analyzes the test coverage with respect to the criteria. As UCT emulates the behavior
of use cases it can be utilized to simulate tests cases execution as well to validate
requirements with the final user. UCT's novelty resides in this aspect particularly
useful in requirements engineering.

Finally, our case study indicates that the testing of pre-code artifacts may behave
similarly as program testing, in which functional and structural testing are
complementary [2]. However, this is a preliminary indication which needs to be
corroborated by new evidences from new case studies. To conduct these new case
studies, we intend to improve UCT since it is just a proof-of-concept tool in its
present version.

References

[1] Offutt, J., Abdurazik, A., “Using UML Collaboration Diagrams for Static Checking and
Test Generation}, Proc. of the Third International Conference on the Unified Modeling
Language (UML 00), York, UK, October 2000, pp. 383-395.

[2] Wood, M., Roper, M., Brooks, A., Miller, J., “Comparing and Combining Software Defect
Detection Techniques: A Replicated Empirical Study”, Proc. of the 6th European Software
Engineering Conference, 1997.

[3] Jacobson, I., Christerson, M., Jonsson, P., Övergaard, G., Object-Oriented Software
Engineering - A Use Case Driven Approach, ACM Press, Addison-Wesley Publishing
Company, 1992.

[4] Object Management Group, UML 1.5 Specification, http://www.omg.org/uml, March 2003.

[5] Beckman, O., Gupta, B., “Developing Test Cases from Use Cases for Web Applications”,
Proc. of the International Conference on Practical Software Testing Techniques (PSTT 2002
South), New Orleans, LA, March 2002.

[6] Briand, L., Labiche, Y., “A UML-Based Approach to System Testing”, Proc. of the Fourth
International Conference on the Unified Modeling Language (UML 2001), Toronto, Canada,
October 2001.

[7] Heumann, J., “Is a Use Case a Test Case?”, Proc. of the International Conference on
Practical Software Testing Techniques (PSTT 2001 North), St. Paul, Minnesota, October 2001.

[8] Ryser, J., Glinz, M., “Using Dependency Charts to Improve Scenario-Based Testing”, Proc.
of the Seventeenth International Conference on Testing Computer Software (TCS 2000),
Washington D. C., June 2000.

[9] Booch, G., Rumbaugh, J., Jacobson, I., The Unified Modeling Language User Guide,
Addison-Wesley Object Technology Series, 1998.

[10] Carniello, A., Teste Estrutural de Casos de Uso, Master Thesis, DCA-FEEC-UNICAMP,
Campinas, SP, Brazil, 2003.

[11] Telesp Celular, Manual do Cliente e Termo de Compromisso: Baby, o Celular Inteligente,
São Paulo, SP, 2000.

[12] Cockburn, A., Writing Effective Use Cases, Addison-Wesley, Boston, 2001.

